
Automated Plausibility Analysis
of Large Phylogenies

Bachelor Thesis of

David Dao

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Alexandros Stamatakis
Dr. Emmanuel Müller

Advisors: Dr. Tomáš Flouri

Time Period: 30th September 2013 – 30th January 2014

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 23rd January 2014

iii

Abstract

Megaphylogeny approaches in biological studies are becoming increasingly important
in modern data-driven biology. However, our ability to infer large phylogenetic trees
gives rise to novel challenges in computational phylogenetics. As we add more and
more taxa while keeping the number of sites in an alignment fixed, phylogenetic
accuracy decreases. Furthermore, it is almost impossible to visually determine
whether such large trees ’make sense’ or not. Facing these issues, how can we
nevertheless assess the biological plausibility of a huge phylogeny? In this thesis, we
develop an automated plausibility assessment approach and introduce the algorithm
Plausibility-Check which tries to determine whether a comprehensive phylogenetic
tree T is plausible or not given a set of substantially smaller reference trees that
contain a proper subset of the taxa in T . This is done by comparing the large tree with
the smaller and hence more trustworthy, reference trees and by calculating as well as
averaging over all topological distances between both. The most compute-intensive
operation of the algorithm is the extraction of the induced subtrees from the large
tree with respect to the taxon set of the small reference tree which is a prerequisite to
compute the topological distance. Therefore, we introduce and implement an effective
algorithm for extracting induced subtrees. We denote the number of nodes in the
large tree with L = 2|T | − 2. The effective algorithm improves the running time of
the original, naïve implementation of Plausibility-Check by a factor of O(L2). In
addition, we prove that the resulting algorithm has an asympotic time complexity
of O(km), where k is the number of reference trees and m is the average reference
tree size. Finally, our experiments on simulated and real data using the STBase tree
database show an overall running time improvement by up to five orders of magnitude
compared to the naïve algorithm. The implementation of Plausibility-Check is
available as part of the RAxML open source code that is available for download at
https://github.com/stamatak/standard-RAxML

v

https://github.com/stamatak/standard-RAxML

Acknowledgements

I would like to express my sincere gratitude to my advisors Prof. Dr. Alexandros
Stamatakis and Dr. Tomáš Flouri for their support, guidance and patience, and
for the interesting discussions and helpful corrections which played a key role in
the development of this work. I would like to extend my appreciation to Prof.
Mike Sanderson from the University of Arizona at Tucson, for sharing the problem
statement with us and implementing an option to extract small reference trees in
STBase.

vii

Contents

1 Introduction 1
1.1 Scientific Contribution . 3
1.2 Structure of the thesis . 3

2 Preliminaries 5
2.1 Phylogenetic Trees: Representation and Terminology 5
2.2 Definitions . 6

3 Automated Plausibility Analysis 11
3.1 A naïve approach . 11

3.1.1 Overview . 11
3.1.2 Extracting Bipartitions . 12
3.1.3 Computing Induced Bipartitions . 12
3.1.4 Discussion . 13

3.2 Towards a faster method . 14
3.3 An improved algorithm . 17

3.3.1 Overview . 18
3.3.2 Preprocessing . 18
3.3.3 Computing Lowest Common Ancestors 19
3.3.4 Constructing Induced tree . 19
3.3.5 Computing Induced Bipartitions . 20
3.3.6 Two variants . 22
3.3.7 Discussion . 22

4 Implementation details 25
4.1 Preprocessing . 25
4.2 Reconstruction . 25
4.3 Extracting Bipartitions . 26

5 Evaluation 27
5.1 Test Datasets . 27

5.1.1 Real-world Datasets . 27
5.1.2 Simulated Datasets . 27

5.2 Experimental Results . 27
5.2.1 Mega-phylogeny . 28
5.2.2 Simulated data . 28

6 Conclusion 33

Bibliography 35

ix

1. Introduction

25 years ago, researchers began to think about sequencing the human genome at the time,
this seemed nearly impossible [LLB+01]. What happened since then is remarkable. It
has become possible to sequence DNA one million times faster and cheaper then before.
The molecular revolution [RUN98] has led to an unprecedented accumulation of relevant
biological raw data and to the emerging importance of a young interdisciplinary field
in computer science and biology: Bioinformatics. A key objective of Bioinformatics is
to develop methods and software for storing, retrieving, organizing and analyzing this
enormous amount of biological data and thereby enable new insights into the secrets of
life. There is little doubt that the future of biology will more and more be shaped by this
scientific discipline.

A major area of research in computational biology which benefits the most from the
exponential growth of available DNA is evolutionary biology. Disentangling the evolutionary
history and diversity of species has preoccupied mankind for centuries. Ever since Darwin’s
work on evolutionary theory [Dar36], evolutionary trees or phylogenies are typically used
to represent evolutionary relationships between species. Biologists estimate that there are
about 5 to 100 million species living on earth today. There is evidence from morphological,
biochemical, and genetic sequence data, that suggests that all organisms on earth are
genetically related. Therefore, the construction of a tree of life compromising all living and
extinct organisms on earth is not only a fascinating but also a challenging idea and is often
referred to as one of the grand challenges of Bioinformatics in our days.

However, the analysis of phylogenetic trees does not only serve human curiosity but also has
practical applications in different fields of science. Phylogenetics help to address biological
problems like drug design [BW98] as well as multiple sequence alignment [Edg04], protein
structure [SKS94], gene function prediction [JE02], or studying the evolution of infectious
diseases [FBB+00].

In the past decade, public databases such as GenBank [BKML+10] have grown exponentially
(see Fig 1.1), which, in conjunction with scalable software, allows for computing extremely
large phylogenies that contain thousands or even tens of thousands of species (see [GCM+09,
SASD11], for instance). In practice, however, our ability to infer such comprehensive trees
resurrects old problems and gives rise to novel challenges in computational phylogenetics.

First of all, reconstructing the phylogeny that best fits the data is a combinatorial opti-
mization problem. The number of phylogenetic trees increases super-exponentially with
the number of taxa [Fel78]. For example, there are three distinct unrooted trees for four

1

1. Introduction

Figure 1.1: Growth of sequence data in GenBank, taken from http://www.benjaminwicks.
com/portfolio/images/01.png

species. However, for only 23 species there already exist 1.32× 1025 possible unrooted trees,
which is ten times the number of estimated stars in the universe.

Due to continuous progress in processor technology, for instance in transistor size [BC11]
and parallel processing techniques [OHL+08] as well as phylogenetic analysis software such
as RAxML [Sta06] and MrBayes [RTvdM+12], biologists can now routinely reconstruct
trees with about 100 to 1 000 species for their studies. However, for even larger phylogenies
with up to tens of thousands of species, we are not sure if we are obtaining a plausible,
let alone correct answer, given the literally astronomical size of the tree search space.
Reconstructing large phylogenies is particularly difficult when the alignment length remains
constant. In other words, accuracy decreases as we add taxa while keeping the number of
sites in the alignment fixed [MRW02, RC05].

Another problem is the non-uniform sampling of data. Although genomic data is becoming
available at an increasing rate, many species are under-sampled because it is difficult to
obtain or collect the samples. For example, prokaryotic organisms that have small genomes,
or model organisms as well as model genes are sampled more frequently than other species.

For that reason, increasing the number of taxa in a data set typically also increases the
amount of missing data [RBP12], which leads to potentially biased results, and, therefore,
to decreased phylogenetic accuracy [Wie03]. Hence, given a large phylogeny, how can we
assess the biological plausibility of such a large tree?

Visual inspection to assess the plausibility of trees with more than 50 000 taxa is not an
option because (i) it is impossible to do so for humans and (ii) there are only but a few
tools available for visualizing such large phylogenies.

One can follow two avenues to address the plausibility assessment problem: either devise
novel visual tools for phylogenetic data exploration or design algorithms for automated
plausibility analysis. In this work, we focus on the latter idea.

2

http://www.benjaminwicks.com/portfolio/images/01.png
http://www.benjaminwicks.com/portfolio/images/01.png

1.1. Scientific Contribution

1.1 Scientific Contribution
In this thesis we introduce a new approach to assess the plausibility of large phylogenies
by computing all pairwise topological Robinson-Foulds (RF) distances [RF81] between a
large phylogeny (for instance, a phylogeny consisting of 55 000 species [SASD11]) and a set
containing a large number of substantially smaller reference trees. These small reference
trees are available in curated databases, such as, STBase [MDFB+13] and comprise a
strict subset of taxa of the large tree. The underlying assumption is that, the small trees
are substantially more accurate. Hence, the lower the average RF distance, or any other
reasonable topological distance, between all small reference trees and the large tree is, the
more plausible the large tree will be. While we use a reference database containing a billion
of small reference trees one could also use reference trees from the literature or from the
treebase database [PCD+09].

Our main contribution is the design and production-level implementation in RAxML1 of an
efficient algorithm for extracting induced subtrees from the large tree with respect to the
taxon set of the small reference tree. This step is necessary to compute the RF distance.

Parts of this thesis have been derived from the following book chapter: D. Dao, T. Flouri,
A. Stamatakis: "Automated Plausibility Analysis of Large Phylogenies", that has already
been submitted for review.

A preprint is available at: http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2013-6.
pdf

1.2 Structure of the thesis
The rest of this chapter is organized as follows: Initially, we discuss some preliminaries
and present the formal problem description. Subsequently, we present a naïve and then an
effective algorithm for inducing subtrees. Next, we provide an experimental evaluation of
both algorithms using simulated and real data from STBase [MDFB+13] and studies by
Smith et al. [SASD11]. Finally, we present a brief summary and conclusion.

1https://github.com/stamatak/standard-RAxML

3

http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2013-6.pdf
http://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2013-6.pdf
https://github.com/stamatak/standard-RAxML

2. Preliminaries

In this chapter, we cover some basic notions and terminology of a phylogenetic tree.
Furthermore we will discuss the required preliminaries and present a formal problem
description.

2.1 Phylogenetic Trees: Representation and Terminology
Over the years, many different systems have been suggested for classifying living organisms.
Aristotle originally suggested a system that he called the ladder of nature or the great
chain of being, where all organisms are organized on a linear scale from lower to higher
animals. However, the first really successful system that was devised was suggested by Carl
Linnaeus. His system is based on a nested hierarchy of groups and was published in his
book Systema Naturae in 1735. Due to its success, people quickly suggested that Linnaeus’
system was realistic. However, only about 100 years later Darwin published his Origin
of Species in 1859 and provided a scientific explanation. According to Darwin, Linneaus’
system of nested hierarchies worked so well, was that, in fact, all life on earth, from the
smallest microorganism to the largest vertebrate, is related and can be traced back to
a common ancestor. Therefore, taxonomic groups are simply groups of the tree-shaped
evolutionary history. Although Darwin’s theory encountered heavy opposition within the
scientific community in the beginning, it is now broadly accepted. Nowadays, evolutionary
relationships among organisms are typically represented by an evolutionary tree (also called
phylogeny).

Fig 2.1 outlines such a typical representation of a phylogeny. In evolutionary biology, a
phylogenetic tree consists of nodes and branches connecting the nodes. We refer to terminal
nodes as leaves (or tips) which correspond to present day living organisms. Nodes can
also be internal (located inside the tree) and thereby correspond to hypothetical common
ancestors. The common ancestor of all organism in the tree is called the root.

Trees can be bifurcating (or fully resolved), meaning that every internal node has two
outgoing branches. In evolutionary theory this corresponds to a population of species
splitting into two and thereby forming (due to genetic drift or adaptation) new species.
Bifurcation is how speciation typically occurs. Trees can also be multifurcating (or partially
resolved). This is not a reflection of the actual biology but rather the result of not having
enough data to resolve on which branch the actual split occured. Phylogenetic trees are
represented in two variants and can either be rooted or unrooted.

5

2. Preliminaries

Figure 2.1: Rooted phylogeny

A rooted tree has a single node (the root) that represents an earlier point in time than
any other node in the tree. Therefore, a rooted tree has directionality, meaning nodes
can be ordered in terms of ’earlier’ and ’later’. In unrooted trees there is no directionality.
This is not a reflection of reality, but rather due to the fact that we simply do not know
where the root is. For further information on phylogenetic trees, especially their history
and biological significance, please refer to [Gre08].

The most important information contained in a phylogenetic tree is its branching pattern
or so called tree topology. Finding a comprehensive tree topology for the tree of life is often
considered to be the holy grail of phylogenetics. Unfortunately, the inference of such a
phylogeny is NP-hard [CT06] and computationally extremely expensive. It has already
been mentioned that the number of possible phylogenies increases super-exponentially with
the number of tips. To be precise, the number of possible unrooted trees is

∏n
i=3(2i− 5)

where n denotes the number of tips of the tree. Thus, state of the art phylogenetic analysis
software such as RAxML and MrBayes depend on good heuristics to search for the best
tree. However, these programs rarely find the best tree due to local optima. Furthermore,
numbers like 2.84 ∗ 1076 possible unrooted trees containing only 50 tips underpin the fact
that this search might be even more difficult than finding the famous needle in a haystack.

As a final remark, it should be stated that evolutionary relationships do not have to be
represented as trees. There exists alternative forms of representation like for instance
phylogenetic networks [Gus05].

2.2 Definitions
Although phylogenies have been used for over 150 years, statistical, computational, and
algorithmic work on phylogenies - often referred to as computational phylogenetics - is
barely 50 years old. Given the biological background and meaning of different parts of a
phylogeny, we can now present a formal description of a tree and its properties.

Definition 2.1 (Degree of a node). We say a node r has a degree deg(r) if the number of
adjacent branches is exactly deg(r).

Definition 2.2 (Rooted Tree). We denote a graph T as a tree if it is connected and
acyclic. In addition, a tree is called a rooted tree if one internal vertex or node r (i.e.
deg(r) > 2) has been designated the root in which case the edges are directed towards or
away from r.

Definition 2.3 (Height of a node in a tree). We say a node v of a tree T has a height
h(v) if the length of the longest path from v to any leaf is exactly h(v).

6

2.2. Definitions

bb

b

b

b

bb

b

b

b

b

b b

b

Figure 2.2: Euler traversal of an unrooted tree

Definition 2.4 (Lowest common ancestor). A node w is the lowest common ancestor
(LCA) of nodes u and v if and only if (iff) u and v are both descendants of w and there is
no node w′ with descendants u and v such that h(w′) ≤ h(w).

Definition 2.5 (Unrooted tree). We further say a connected, undirected and acyclic graph
T is a unrooted tree if T has no root node.

In the following, we will denote the LCA of two nodes u and v as lca(u, v). We further
denote the path from node u to v in a tree T by u v. Note that the notion of height
and LCA is not defined in unrooted trees. When we use the terms node height or LCA,
we therefore imply that we are dealing with rooted trees. Furthermore, we only consider
rooted binary trees and unrooted trees that only consists of inner nodes of degree 3 and
leaves (degree 1), that is, strictly bifurcating trees. We further know that a rooted strictly
binary tree consists of 2n − 1 nodes where n is the number of leaves in the rooted tree.
Trivially, an unrooted bifurcating tree has 2n− 2 nodes due to the abscence of a root.

Definition 2.6 (Euler tour of a rooted tree). The Euler tour of a rooted tree is a sequence
of nodes generated by executing the following Step with the root node r as input parameter.
Step(v): List/print node v. If v is not a leaf: call Step with the left child as parameter,
then call Step with the right child as parameter and finally list/print v.

Note that, in an arbitrary graph, an Euler tour is a path that visits every edge exactly
once. However, because trees are acyclic graphs, we say that each edge is bidirectional.
Hence, we define the Euler tour of a rooted tree as the path through the tree that begins at
the root and ends at the root, traversing each edge exactly twice - once to enter a subtree,
and once to exit it. The Euler tour of a tree is essentially a depth-first traversal of a tree
that returns to the root at the end as outlined in Fig 2.2.

The length of the Euler tour for a rooted binary tree of n leaves is exactly 4n− 3 because
we visit each leaf only once and each inner node (including the root) three times. Hence
this sums to exactly 4n− 3 elements. Analogously to the rooted binary tree, the length of
the Euler tour of a unrooted bifurcating tree is 4n− 5. We can arbitrarily root the tree at
an inner node v and traverse the resulting tree starting from v. Note that because deg(v)
= 3, we traverse v four times.

Definition 2.7 (Inorder traversal of a rooted tree). The inorder traversal of an rooted
tree is a sequence of nodes formed by executing the following Step with the root node r as
input parameter. Step(v): Call Step with left-child as parameter, list v and call Step with
right-child as parameter.

Trivially, the length of the inorder traversal sequence for a rooted tree with n leaves is
exactly 2n− 1, because we visit every node once.

7

2. Preliminaries

Lemma 2.8. Let v1, v2, . . . , vn be the inorder notation of a tree T . For every k =
1, 2, . . . , bn/2c it holds that v2k = lca(v2k−1, v2k+1).

Proof. We prove the lemma by induction on the size of T . First we show that our claim
holds for a binary tree with three nodes which is our base case. Next, under the assumption
that our claim holds for all trees with up to m nodes, we prove that it also holds for trees
with m + 1 nodes.

• Let T be a tree with root node u and two child nodes v and w. By definition, the
inorder traversal of T yields the sequence v, u, w and hence the base case holds.

• We now assume that our claim holds for every tree with up to m nodes and show
that this is also the case for m + 1 nodes. Let u be the root node of T and
u1, u2, . . . , uk its direct descendants. The inorder traversal of T yields the sequence
I(T (u1)), u, I(T (u2)), u, . . . , u, I(T (uk)) where I(T (ui)) is the inorder notation of the
subtree rooted at the i-th direct descendant of u. Trivially, it holds that |T (ui)| < m,
for 1 ≤ i ≤ k, and based on our assumption, the claim holds for any node in I(T (ui)).
Now, consider the i-th occurrence of u in the sequence. We observe that a node from
T (ui) (specifically its rightmost leaf) appears immediately before u and a node from
T (ui+1) (specifically its leftmost leaf) immediately after u. Since the LCA of any
pair (p, q) such that p ∈ T (ui) and q ∈ T (ui+1) is u, the lemma holds.

For instance, let node u be the parent of two nodes v and w where v is the root node of
subtree T (v) and w is the root node of subtree T (w). Let p be the last node in the inorder
traversal of T (v) and q the first node in the inorder traversal of T (w). By definition of
inorder traversal, p is the rightmost leaf of T (v) and q is the leftmost leaf of T (w). Hence,
the LCA of p and q is u.

Definition 2.9 (Preorder traversal of a rooted tree). The preorder traversal of a rooted
tree is a sequence of nodes formed by executing the following Step with the root node r as
parameter. Step(v): List node v. Call Step with the left child as parameter. Call Step with
the right child as parameter.

As for the inorder traversal, the generated sequence is 2n− 1 elements long.

Next we denote V as a set of nodes. We define the binary relation < on a tree with nodes
drawn from V , such that v < u iff the preorder id of v is smaller than the preorder id of u.

Definition 2.10 (Induced subgraph). Let T be a tree such that L is the set of its leaves
and L′ ⊆ L a proper subset of its leaves. We call induced subgraph the minimal subgraph
that connects the elements of L′.

We now give the formal definition of an induced subtree.

Definition 2.11 (Induced subtree). Let G(T, L′) be the induced subgraph of a tree T on
some leaf-set L′. Remove nodes v2, . . . , vq−1 if there exist paths of the form v1, v2, . . . , vq

resp. r, v2, v3, . . . , vq such that r is the root, deg(v1) > 2, deg(vq) 6= 2, and deg(v2), . . . , deg(vq−1) =
2, and replace the corresponding edges with a single edge (v1, vq), resp. (r, vq).

Definition 2.12 (Bipartition). Let T be a tree. Removing an edge from T disconnects the
tree into two smaller trees, which we call Ta and Tb. Cutting T also induces a bipartition of
the set S of taxa of T into two disjoint sets A of taxa of Ta and B of taxa of Tb. We call a

8

2.2. Definitions

bipartition trivial, when the size of either A or B is 1. These bipartitions are called trivial
because, as opposed to non-trivial bipartitions, they do not contain any information about
the tree structure; a trivial bipartition A of size 1 occurs in every possible tree topology for
S. We also denote by B(T) the set of all trivial bipartitions of tree T .

There are exactly as many non-trivial bipartitions as there are inner branches in a tree.
Therefore we can compute n− 3 bipartitions for unrooted trees and n− 2 bipartitions for
rooted trees.

Definition 2.13 (Robinson-Foulds distance). Given a set S of taxa, two phylogenetic trees
T1 and T2 on S, and their respective sets of nontrivial bipartitions B(T1) and B(T2), the
RF distance between T1 and T2 is RF (T1, T2) = 1

2((B(T1) \B(T2)) ∪ (B(T2) \B(T1))). In
other words, the RF distance is the number of bipartitions that occur in one of the two
trees, but not in both. This measure of dissimilarity is shown to be a metric [RF81] and we
can compute it in linear time [PGM07].

9

3. Automated Plausibility Analysis

In the following we introduce the algorithm Plausibility-Check.

The algorithm assesses whether a comprehensive phylogenetic tree T is plausible or not by
comparing it to a set of smaller reference trees that contain a proper subset of taxa of T .
Our underlying assumption is that these smaller phylogenies are more accurate than the
large tree. Therefore, a low topological distance would underpin the biological plausibility
of the large tree.

Furthermore, we will present two different versions of Plausibility-Check:

• a naïve approach called Naive-Plausibility-Check

• an improved version called Fast-Plausibility-Check

3.1 A naïve approach

In this section, we will present a formal description of Naive-Plausibility-Check. In
addition, we will discuss its time complexity and provide an example.

3.1.1 Overview

We denote an induced tree as T |ti and read it as the tree induced by the taxon set of ti in
T . An overview of the naïve approach which we denote as Naive-Plausibility-Check is
outlined in Alg 3.1

We take as input parameters a large phylogeny T and a set F of small reference trees. As
a important prerequisite, we ensure that trees in F only contain proper subsets of the
taxa in T . Next, Naive-Plausibility-Check extracts all bipartitions of T , which we
further denote as B(T) and stores them in a hash table. Then, we loop over all given small
trees ti in F and extract for every small tree ti its corresponding leaf-set L′i. Given L′i,
Naive-Plausibility-Check can now compute the induced subtree T |ti, its bipartitions
B(T |ti), and hence the Robinson-Foulds distance between T |ti and ti. When all small trees
have been processed, the algorithm finishes by returning a list of m pairwise RF distances.
Averaging these distances will give us a metric which tells us how plausible our large tree
is in respect to the small reference trees.

11

3. Automated Plausibility Analysis

Algorithm 3.1: Naive-Plausibility-Check
Input : Tree T of n nodes, set F = {t1, t2, . . . , tm} of small reference trees that

contain a proper subset of the taxa in T
Output :m pairwise RF distances RF(T, F) = {r1, r2, . . . , rm} between induced

tree T |ti and ti

1 B(T)← Extract-Non-Trivial-Bipartitions(T)
2 for i← 1 to m do
3 B Extract leaf-set L′i from ti

4 B(T |ti)← Compute-Induced-Subtree-NBP(T, L′i)
5 B(ti)← Extract-Non-Trivial-Bipartitions(ti)
6 ri ← RF-Distance(B(T |ti), B(ti))
7 Let RF(T, F) = r1, r2, . . . , rm

Algorithm 3.2: Extract-Non-Trivial-Bipartitions
Input : Tree T of n nodes
Output : List of all non-trivial bipartitions B(T) of T

1 B Root the tree T
2 B Traverse the tree bottom-up towards the root with a depth-first traversal
3 B Recursivley extract all bipartitions from each inner branch of T
4 Let B(T) = b1, b2, ...bn−3 be the list of non-trivial bipartitions of T

3.1.2 Extracting Bipartitions

By definition, the RF distance compares bipartitions as a method to calculate the topological
distance between different trees with the same taxon set. While we will only consider the
RF distance, one could also use a different and more advanced topological distance, such
as the quartet-distance [BTKL00] for instance.

Extract-Non-Trivial-Bipartitions calculates all nontrivial bipartitions of T .

In the naïve approach, we will first extract all non-trivial bipartition bi at each inner branch
of the large tree and store them in a hash table. We will then use this hash table to
generate the induced non-trivial bipartitions b′i in a later step.

The algorithm relies on a rooted view of the otherwise unrooted large tree. Therefore,
we initially root the tree at an arbitrary branch and recursively compute all bipartitions
bottom-up towards the virtual root via a depth-first traversal.

The implementation requires O(n2) time for traversing the tree and storing all bipartitions
in a suitable data structure, typically, a hash table. For further implementation details see
Chapter 4.1 in [PABE+09].

However, there are also alternative ways for extracting bipartitions. In section 3.3.5 we
will introduce a novel approach to compute bipartitions given only the preorder array
representation of the tree.

3.1.3 Computing Induced Bipartitions

In the previous step, we efficiently extracted all non-trivial bipartitions from the large
tree. Given B(T), we can now filter our required induced subtree bipartitions. In other
words, instead of constructing an instance of the induced subtree with respect to the taxon
set of the small reference tree, we can skip this step and directly compute the induced
bipartitions B(T |ti).

12

3.1. A naïve approach

Algorithm 3.3: Compute-Induced-Subtree-NBP
Input : List of all non-trivial bipartitions B(T) = b1, b2, . . . , bn−3 of T

Leaf-set L′

Output : List of all non-trivial bipartitions B(T |ti) of induced tree T |ti

1 B Iterate through all bipartitions B(T)
2 for i← 1 to |B(T)| do
3 b′ ← B Filter bipartition b with L′

4 if b′ is non-trivial then
5 B Rehash b′

As a prerequisite, we first need to extract the leaf-set L′ of the reference tree.

Next, Compute-Induced-Subtree-NBP extracts the induced bipartitions B(T |ti) by
iterating through all bipartitions bi of T which we previously stored in a hash table. It
generates the induced non-trivial bipartitions b′i for T |ti by deleting the leaves which are
not present in the leaf-set L′. The resulting induced bipartitions are then re-hashed. Hence,
Compute-Induced-Subtree-NBP has a complexity of O(n2), where n is the number
of leaves of T . Note that, we can reduce the complexity to O(n2

w) using a bit-parallel
implementation, where w is the vector width of the target architecture (e.g., 128 bits for
architectures with SSE3 support).

Example 3.1.1. Given the query tree T in Fig. 3.1 and the smaller reference tree ti in
Fig. 3.2, we initially compute the induced non trivial bipartitions B(T |ti) and then the RF
distance. First we extract all non-trivial bipartitions of T , which we represent as bitvectors,
and hash them into a hashtable h. We represent all bipartitions in a canonical way as
bitvectors:

B(T) = 110000, 110010, 110011

By extracting the leaf-set L′ of ti, we know that taxon E is missing in the reference tree.
Therefore we have to iterate through all bitvectors in h and set the bits to zero, which is
not represented in L′. In our example, the particular bit can be found at index 5. After
filtering all bitvectors, the resulting sequence is

B(T |ti) = 110000, 110000, 110001 = 110000, 110001

We need to pay attention to potential duplicates. Next, we will rehash all bipartitions in
B(T |ti) and look how many bipartitions the reference tree ti shares with T |ti.

B(ti) = 110000, 110100

In this example, we can find one shared bipartition (110000). Therefore the RF distance
between T |ti and ti is 1.

3.1.4 Discussion

In summary, Naive-Plausibility-Check has an overall complexity of O(n2mk), where
n is the size of the large tree, k is the number of small trees in the set F and m is the
average size of the small trees. However, as mentioned earlier, we can reduce the complexity
using bitvectors. Thus, the reduced time complexity is O(n2mk

w). Nonetheless, this results
in serious performance issues for the standard use case of our algorithm as outlined in
Section 5.2. Automated Plausibility Analysis is designed to deal with large phylogenies
and millions of substantially smaller reference trees. Thus, for each small reference tree,

13

3. Automated Plausibility Analysis

E

F

A

B

C

D

B(T) Bitvector
AB|CDEF 110000
ABE|CDF 110010
ABEF|CD 110011

Figure 3.1: Unrooted phylogeny T of 6 taxa. We represent its non-trivial bipartitions as
bitvectors

C

D

FA

B

B(ti) Bitvector
AB|CDF 110000
ABD|CF 110100

Figure 3.2: Small reference tree ti and its non-trivial bipartitions B(ti) for example 3.1.1.
ti shares with T from figure 3.1 one non trivial bipartition (orange)

Naive-Plausibility-Check needs to iterate through the whole taxon set of the large tree
to extract the required induced bipartitions. Therefore, we will discuss how to improve the
algorithm in the next section and introduce a significantly faster algorithm for extracing
induced subtrees.

3.2 Towards a faster method
In this section we present a novel method for speeding up the computation of induced
subtrees for a given leaf-set. We will further discuss the theory behind this method and
outline the benefits with respect to the previous naïve approach.

The key idea is to root the large tree at an inner node and build the induced subtree by
computing the LCA of each and every pair of leaves in the leaf-set. We can then build
the induced subtree from the leaves and the LCAs. Although, at first glance this may
seem computationally expensive it is possible to preprocess the large tree in a way that
we can compute the required LCAs of each pair in O(1) time. We will get back to this in
Section 3.3. In addition, it is sufficient to compute the LCAs of |L′| − 1 particular pairs of
leaves which is a rather surprising finding. The rest of this Section focuses on proving this
statement.

For an arbitrary leaf-set L′ of three and more taxa, we partition the set V of vertices of
the induced subgraph into three disjoint sets

V = V1] V2] V3

such that Vi = { v | v ∈ V, deg(v) = i }.

14

3.2. Towards a faster method

b

t1

t2

t3

Figure 3.3: Node from V3

Note that, for a leaf-set with size two, the induced subgraph is a path of nodes and edges
from one taxon to another and therefore the induced tree is a simple line with the two
elements of the leaf-set as endpoints. Given an unrooted binary tree, we know from section 2
that, the size of V3 is exactly |L′| − 2.

Next, we show that all nodes in V3 are LCAs of some pairs of leafs in the leaf-set L′. In
fact, V3 consists of all LCAs of all possible pairs of leaves in L′ except possibly at most one
LCA (which will be in V2). We deal with these special cases in Lemma 3.2.

Lemma 3.1. Let G(T) be the induced subgraph of an unrooted tree T . Rooting T at an
arbitrary inner node r allows us to compute V3 from the LCAs of pairs of leaves in L′.

Proof. We will prove the lemma by contradiction.

• Let us assume that there exists a node v in V3 that is not the lowest common ancestor
of any two nodes from L′. Because deg(v) = 3, in the rooted tree there exist exactly
two paths v u and v w, where u, w ∈ L′. Now let p = lca(u, w) be the least
common ancestor of u and w, r u and r w the two paths leading from root r to
u and w, and r p are their common path. However, p 6= v implies a cycle in the
subgraph.

Therefore, any node in V3 is the LCA of two leaves in L′.

Fig. 3.3 portrays any node v from set V3, that is, the root node of a rooted tree with three
subtrees t1, t2 and t3. Since v is in V3 we know that all three subtrees t1, t2 and t3 contain
at least one leaf from L′.

The next lemma proves that V3 is the set of all LCAs for all pairs of leaves from L′, except
possibly at most one LCA v. This node is part of V2 (of degree 2) and results from rooting
the tree at a node that is in V2 (in which case v is the root) or at a node that does not
appear in V .

Lemma 3.2. There may exist at most one node in V2 that is the LCA of two leaves from
L′. That node appears if and only if the root is not part of the induced subgraph or if it is
the root itself.

Proof. First we show a necessary condition that must hold for a node to be in V2 and to
simultaneously be a LCA of two leaves. Then, we show that only one such node exists.

15

3. Automated Plausibility Analysis

• An internal node v (as depicted in Fig. 3.3) which is the LCA of two leaves after
rooting the tree at an arbitrary point, ends in V2 only if one of the subtrees, for
instance t1, does not contain leaves from L′. Moreover, the root must either be at
node v or be in t1.

• Now, assume that there exists a node v′ in t3 or t2 that is an LCA and belongs
to V2. This node must have degree 3 in the rooted tree, and hence connect three
subtrees t′1, t′2 and t′3. By definition, two of the subtrees must contain leaves from L′

and the third subtree must not (and must contain the root), such that node v′ is in
V2. However, this is a contradiction as the third subtree is either the subtree that
contains t1, t2 and v (in case v′ is in t3) or t1, t3 and v (in case v′ is in t2).

To generate the induced tree from the induced subgraph G(T), we remove all nodes from
V2 and replace all edges (v1, v2), (v2, v3), . . . , (vn−1, vn) formed by paths v1, v2, . . . vn such
that v1, vn /∈ V2 and vi ∈ V2, for all 1 < i < n, is represented by a single edge (v1, vn). We
have already shown that it is sufficient to compute set V3 which, together with L′, can
generate the induced tree. Therefore, computing |L′| − 2 LCAs is sufficient to induce the
tree for leaf-set L′. However, there exist |L

′|(|L′|−1)
2 pairs of leaves. The main question now

is how to choose the pairs for computing the unique |L′| − 2 LCAs.

Let C denote the set of all LCAs of all pairs of a leaf-set L′, that is,

C = { p | p = lca(u, v), u 6= v, u, v ∈ L′ }.

The following lemma proves a fundamental property of LCA computation using the preorder
notation. For three nodes u, v and w, where u appears before v and v before w in the
preorder traversal of a rooted tree T , we show a transitive property which dictates that
knowing the LCAs p of (u, v) and q of (v, w) is sufficient to determine the LCA of (u, w).
In fact, the LCA of (u, w) is the node that appears first in the preorder traversal of T
between node p and node q.

This property allows us to formulate the main theorem which proves that there exist at
most L′ − 1 unique LCAs for the leaf-set L′ (and a rooted tree), and states which pairs of
leaves to use for obtaining the required LCAs.

Lemma 3.3. In the following, we denote the preorder id of a nodev as pid(v). Let u, v, w ∈
L′ such that u < v < w. It holds that lca(u, w) = v′, such that pid(v′) = min(pid(p), pid(q))
where p = lca(u, v) and q = lca(v, w).

Proof. Proof by contradiction. Let r be the root of the tree. Let us assume that p = lca(u, v)
and q = lca(v, w). By definition of the LCA, q may appear only along the path r p or
p v, that is, along the path r v. We split the proof into two cases: Node q appears
on either r p or p v.

• In case q appears along p v. Let us assume that v′ = lca(u, w) is not p. It can
then appear along the path r u. If it appears anywhere except p we have a cycle.
Therefore, lca(u, w) = p and it holds that pid(p) = min(pid(p), pid(q)).

• In case q appears along r p. Let us assume that v′ = lca(u, w) is not q. It can
appear along the path r u. If it appears anywhere except p we have a cycle.
Therefore, lca(u, w) = q and it holds that pid(q) = min(pid(p), pid(q)).

The lemma holds.

16

3.3. An improved algorithm

Specifically, with the next theorem we show that computing the set

C ′ = { p | p = lca(u, v), u < v, u, v ∈ L′, @w : u < w < v }

is not only sufficient, but that C ′ = C.

Theorem 3.4. Given the sequence of leaves v1, v2, . . . , vn such that vi < vi+1 for 1 ≤ i < n,
it holds that lca(vj , vk) = u and that pid(u) = min(pid(uj), pid(uj+1), . . . , pid(uk−1)) for
1 ≤ j < k ≤ n and ui = lca(vi, vi+1) for j ≤ i < k.

Proof. By strong induction on the range

• Let k − j = 2. The claim holds as shown by Lemma 3.3 and this forms our base case.

• Let m be a positive integer greater than 2, and let us assume that the claim holds
for k − j ≤ m. This forms our induction hypothesis and we must now prove that the
claim holds for m + 1.

• Let k − j = m + 1. From this interval let us consider nodes vj , vk−1 and vk. From
the induction hypothesis we obtain that u` = lca(vj , uk−1) such that pid(u`) =
min

⋃k−1
i=j (pid(ui)). We also have that lca(vk−1, vk) = uk−1. From Lemma 3.3 we

can easily obtain the desired proof that lca(vj , vk) is the node that has the smallest
preorder identifier between u` and uk−1 and hence our claim holds.

Theorem 3.4 implies that it is sufficient to sort the leaf-set in ascending order according
to the preorder identifiers of the corresponding leaves in the rooted tree. Then, for the
sequence u1, u2, . . . , u|L′| of leaves, one can compute the LCA of |L′| − 1 pairs (ui, ui+1),
for i ≤ 1 < |L′|, to obtain the desired |L′| − 1 unique LCAs. Note that, in case the selected
root node is in V3, it will appear twice; once as the LCA of two leaves from t1 and t2 (see
Fig. 3.3), and once as the LCA of two leaves from t2 and t3. On the other hand, if the root
node is not in V3, we obtain one additional LCA from V2, which will not appear in the
induced tree.

So far, we have proven that, given a leaf-set L′, we can compute all common ancestors of
all pairs of leaves in L′ by simply computing the LCA of only |L′| − 1 pairs. Each pair
consists of two vertices ui and uj so that there is no vertex uk such that ui < uk < uj .
Moreover, we have shown that there are exactly |L′| − 2 common ancestors of degree 3
which will be present in the induced tree. In case the root node (when rooting the unrooted
tree) is not part of these nodes, we will obtain one additional common ancestor which will
have degree 2 in the induced subgraph, but that will not appear in the induced tree.

3.3 An improved algorithm
Based on the theoretical insights from the previous Section, we are now in a position to
introduce and implement an effective algorithm for inducing a subtree T |ti with respect to
a given large tree T and the leaf-set L′ of the smaller reference tree ti. The algorithm is
an important part of the improved version of Plausibility-Check which we denote as
Fast-Plausibility-Check.

Here we discuss the required preprocessing of the large tree T . We create a dedicated data
structure from T so that we can query for LCAs in O(1) time. Moreover, we explain the
actual inducing step and how to query for LCAs to build the induced tree T |ti. Finally, we
present two ways for computing the resulting bipartitions from T |ti.

17

3. Automated Plausibility Analysis

Algorithm 3.4: Fast-Plausibility-Check
Input : Tree T of n nodes, set F = {t1, t2, . . . , tm} of small reference trees that

contain a proper subset of the taxa in T
Output :m pairwise RF distances RF(T, F) = {r1, r2, . . . , rm} between induced

tree T |ti and ti

1 RMQ(T)← Preprocess-Rooted-Tree(T)
2 B Generate mapping f : L→ 〈1, 2(n− 1)〉
3 for i← 1 to m do
4 B Extract leaf-set L′i from ti

5 Let I(T |ti) be the inorder notation of T |ti

6 I(T |ti)← Compute-Induced-Tree(RMQ(T), L′i, f)
7 B Sort I(T |ti) to get P (T |ti)
8 B(T |ti)← Extract-Bipartitions-Prefix(P (T |ti))
9 B(ti)← Extract-Non-Trivial-Bipartitions(ti)

10 ri ← RF-Distance(B(T |ti), B(ti))
11 Let RF(T, F) = r1, r2, . . . , rm

3.3.1 Overview

An overview of the fast approach of PlausibilityCheck is outlined in Alg 3.4

Just as the naïve approach, Fast-Plausibility-Check takes as input parameters a large
phylogeny T and a set F of small reference trees. For better understanding, we further
divide the algorithm into three steps - preprocessing, inducing and bipartition extraction. In
the first step, we preprocess T and create a succint Range Minimum Queries datastructure,
which we denote as RMQ(T), to query for LCAs in constant time. Furthermore, we
generate a mapping f which allows us to quickly look up particular pairs of leaves of L
in RMQ(T). Next, we iterate through all small trees ti in F and extract its leaf-sets L′i.
Given our preprocessed datastructure RMQ(T), a mapping f and the extracted leaf-set
L′i, we can now compute the actual induced subtree T |ti. Finally, given the resulting
preorder representation of T |ti, we compute the induced bipartitions B(T |ti) and hence
the Robinson-Foulds distance between T |ti and ti.

3.3.2 Preprocessing

To allow fast LCA queries, we first have to root T at an arbitrary inner branch and then
create a data structure that allows for queries in constant time. To achieve this we consider
the close relation between LCA computation and Range Minimum Queries (RMQ) that
was first published in [BV93]. For a static array A[1, n] of n elements, a Range Minimum
Query rmqA(i, j) for i < j returns the position of the minimum element in the subarray
A[i, j]. This problem was shown to be linearly equivalent to the LCA-problem by Gabow
et al. [GBT84], in the sense that both problems can be transformed into each other in time
linear in the size of the input. As outlined in [FH07], the size of the succint preprocessed
data structure for a tree with n nodes is at most 2n + o(n) bits. In addition, queries for
the minimum element in between two array indices can be done in constant time. To
benefit from these insights, we first have to reduce our LCA queries to RMQ queries.
Therefore, we build a sequence of node identifiers which correspond to an Euler tour of the
rooted tree. These identifiers are assigned to each node during a preorder traversal of T .
Algorithm 3.5 lists the required preprocessing steps. For further implementation details on
how to construct a specific RMQ structure we rather point the interested reader to the
available literature [FH06, FH07].

18

3.3. An improved algorithm

Algorithm 3.5: Preprocess-Rooted-Tree
Input : Tree T of n nodes
Output : Preprocessed data structure RMQ(T)

1 B Root tree T
2 B Build Euler tour of T
3 Let E(T) = s1, s2, . . . , s2n−1 be the Euler tour of T
4 B Prepare a RMQ data structure
5 Let P (T) = pid(s1), pid(s2), . . . , pid(s2n−1) be the list of preorder identifiers of

E(T)
6 Let RMQ(T) = Range-Minimum-Query-Preprocess(P (T))

3.3.3 Computing Lowest Common Ancestors

Before we can finally compute the LCA of two leaf nodes of L′ in constant time, we require
one additional data structure. Although we built the RMQ datastructure in the previous
step, we still lack the information of the particular input indices for each leaf. Let L be
the leaf-set of T and n the number of taxa in the large tree. Our additional data structure
represents the mapping

f : L→ 〈1, 4n− 5〉

By mapping each leaf of the rooted tree T to the position where it appears for the first
time in the Euler tour, we can easily look up the required indices. Given the mapping f ,
we are now in a position to compute the LCA of two leaves u, v ∈ L in time O(1) using
RMQs. Therefore we query for the node w with the lowest preorder identifier in the range
〈i, j〉, where i = min(f(u), f(v)) and j = max(f(u), f(v)). Since we reduced LCA to RMQ,
w is not only the minimum element in the range 〈i, j〉 but also the lowest common ancestor
of u and v.

3.3.4 Constructing Induced tree

We can now compute the inorder sequence of the induced subtree. Compute-Induced-
Tree takes as input parameters the extracted leaf-set L′, the RMQ datastructure RMQ(T)
and the mapping f . First, we sort L′ according to the preorder traversal identifiers of T
and denote our sorted leaf-set as L′S = u1, u2, . . . , u|L′|. Next, we compute the LCA of
every pair (ui, ui+1) and hence construct a new sequence

I = v1, lca(v1, v2), v2, lca(v2, v3), v3, . . . , v|L′|−1, lca(v|L′|−1, v|L|), v|L′|

of size 2|L′| − 1. As stated earlier in Lemma 2.8, the resulting sequence corresponds to the
inorder notation of the induced rooted tree.

Algorithm 3.6: Compute-Induced-Tree
Input : Preprocessed RMQ structure RMQ(T)

Leaf-set L′

Mapping f : L′ → 〈1, . . . , n〉
Output : Inorder notation of induced tree T ′

1 B Sort leaf-set according to preorder traversal identifiers of T
2 Let L′S = (u1, u2, . . . u|L′|) such that ui−1 < ui < ui+1, for 1 < i < |L′|
3 B Compute common ancestors
4 for i← 2 to |L′| do
5 ci ← lca(ui−1, ui)

19

3. Automated Plausibility Analysis

Algorithm 3.7: Build-Induced-Tree
Input : Sorted list of nodes (u1, u2, . . . , un)
Output : Induced unrooted tree

1 B Check whether the root is of degree 2 or 3
2 r ← New-Node
3 push r; push r
4 if u1 = u2 then
5 push r
6 start← 3
7 deg(r)← 3
8 else
9 start← 2

10 deg(r)← 2
11 for i← start to n do
12 pop p
13 q ← New-Node
14 Append-Child(p, q)
15 if ui is a leaf then
16 push q; push q
17 deg(q)← 3
18 else
19 deg(q)← 1
20 if deg(r) = 2 then
21 Connect the two children of r with an edge and remove r

3.3.5 Computing Induced Bipartitions

By sorting the inorder sequence in ascending order we obtain the preorder notation of the
induced rooted tree. A direct approach to compute the induced bipartitions would be to
build the induced tree T |ti inO(|L′|) directly from the preorder sequence using algorithm 3.7.
Build-Induced-Tree constructs the induced rooted tree in depth-first-order using a stack.
Note that, according to Lemma 3.2, we might have the case that the resulting root node is
of degree two. In this case, we remove the root and connect its two children by an edge.
Given T |ti, we can further compute B(T |ti) with Extract-Non-Trivial-Bipartitions
which we already introduced in Section 3.1.

However building an induced tree requires additional storage, therefore we present Extract-
Bipartitions-Prefix(Alg 3.8) which is an alternative method for extracting non-trivial
bipartitions without relying on an instance of a tree structure. The algorithm determines all
subtrees of T |ti and computes the corresponding bipartitions by seperating these subtrees
from T |ti.

Example 3.3.1. Compute the induced tree T |ti and its bipartitions, given the query tree
T in Fig. 3.4 and a leaf-set L′ that consists of the leaves in Fig. 3.2.

First, we transform the unrooted tree into a rooted one by designating one branch as root.
We then assign a preorder traversal identifier to each node as shown in Fig. 3.5, starting
from 0. The numbers at each node in the figure indicate the preorder traversal identifiers
assigned to that particular node. For this example, the Euler traversal is the sequence

0 1 0 2 3 2 4 5 4 6 4 2 0 7 8 9 8 10 8 7 11 12 11 13 11 7 0

20

3.3. An improved algorithm

Algorithm 3.8: Extract-Bipartitions-Prefix
Input : Sorted list of nodes (u1, u2, . . . , un)
Output : Non-trivial bipartitions from induced subtree B(T |ti) = b1, b2, . . . , bn−3

1 k = 0
2 for i← n to 1 do
3 if k < number of splits then
4 V [i]← 1
5 if ui is not a leaf then
6 for j ← 1 to deg(ui) do
7 V [i]← V [i] + V [i + V [i]]
8 for j ← 1 to V [i] do
9 if ui+j is a leaf then

10 Add ui+j into bi

11 else
12 Add all nodes from bi+j into bi

13 j ← j + V [i + j]
14 k = k + 1

(0)
(2)

(7)
(11)

(8)

F (1)

A(13)

B(12)

C(3)

(4)

D(9)E(10)

G(5)

H(6)

Figure 3.4: unrooted phylogeny T of 8 taxa with its preorder identifiers (orange)

which is preprocessed for RMQ queries. We then sort the preorder identifier sequence of
leaves of L′ in ascending order, that is,

1, 3, 9, 12, 13

Then, we compute the LCAs of node pairs

(1, 3), (3, 9), (9, 12), (12, 13)

and obtain the sequence
1, 0, 3, 0, 9, 7, 12, 11, 13

which represents the inorder notation of the induced tree. Next, we extract the induced
non-trivial bipartitions using Algorithm 3.8. To this end, we sort the inorder sequence to
retrieve the preorder notation P (T |ti) of T |ti.

0, 0, 1, 3, 7, 9, 11, 12, 13

We are now able to compute the size of each subtree in T |ti with a bottom-up approach
and store it in an array V . Take for example V [4]. After initialization and the first

21

3. Automated Plausibility Analysis

(0)
C(3)

(7)
(11)

D(9)

F (1)

A(13)

B(12)

Figure 3.5: Induced phylogeny T |ti for Example 3.3.1

i 0 1 2 3 4 5 6 7 8
P (T |t) 0 0 1 3 7 9 11 12 13

V [i] - 8 1 1 5 1 3 1 1

0 1 3 7 9 11 12 13

Figure 3.6: Induced subtree after using Extract-Bipartitions-Prefix

iteration V [4] is V [4] + V [4 + V [4]] = 1 + V [5] = 2. In the second step, we get V [4] =
V [4] + V [4 + V [4]] = 2 + V [6] = 5 and thus the number of nodes of the subtree which has 7
as root (see Fig.3.6). We can now easily continue to compute all non-trivial bipartitions
via dynamic programming.

Note that as an alternative, we could also build the induced tree directly from the inorder
notation, or sort the sequence and build the tree using Algorithm 3.7 and hence compute
the bipartition with our familiar depth first approach (section 3.1). Fig. 3.5 depicts the
induced tree.

3.3.6 Two variants
As stated earlier, it is possible to implement the algorithm in two different ways, depending
on the amount of available memory. The difference between the two variants is in the way
how the initial sorting of each query leaf-set is done.

Let T be a large tree of n nodes and let L′1, L′2, . . . , L′k be k leaf sets with an average size
of m. One can now sort each leaf-set, compute the LCAs from the sorted sequence (and
the already preprocessed Euler tour of the query tree) using Algorithm 3.6, and then apply
Algorithm 3.7 to construct the induced tree. The asymptotic time and space complexity for
this variant is O(n) time and space for preprocessing T and O(km log m) time for inducing
k trees.

The alternative variant is to avoid sorting each of the k leaf-sets individually. Instead,
one can store all of them in memory at the same time and sort them using a bucket sort
method. Since the range of values in the k leaf-sets is 〈1, n〉, we can sort them all in a
single pass in conjunction with the preprocessing step in O(max(n, km)) time and space.
Thereafter, we can build the k induced trees in O(km) time, assuming that we construct
the induced tree directly from the inorder notation.

3.3.7 Discussion
We showed that Fast-Plausibility-Check appears in two variants and can have either
a time complexity of O(km2 log m) or O(km2). Furthermore, in the first variant, the

22

3.3. An improved algorithm

Algorithm Time complexity Space complexity
Naive-Plausibility-Check O(n2mk) O(n2)

Extract-Non-Trivial-Bipartitions O(n2) O(n2)
Compute-Induced-Subtree-NBP O(n2) O(n2)

Fast-Plausibility-Check O(km2 log m)/O(km2) O(n + m2)/O(km + m2)
Preprocess-Rooted-Tree O(n)/O(max(n, km)) O(n)/O(max(n, km))
Compute-Induced-Tree O(m log m)/O(m) O(m)

Extract-Bipartitions-Prefix O(m2) O(m2)

Figure 3.7: Overview of the time and space complexities of our presented algorithms, where
n is the number of taxa of the large tree, k the number of reference trees and
m the average size of the reference trees

algorithm needs O(n + m2) space while in the second variant it requires O(km + m2) space.
Although the second variant has a slightly better time complexity than the first one, we
have to consider the fact, that the number of small reference trees k might be far larger
than n. Therefore, the choice of algorithm strongly depends on the available amount of
memory and the input data.

Nevertheless, both implementations of Fast-Plausibility-Check have one significant
advantage compared to Naive-Plausibility-Check. Besides the better overall space
complexity, the time complexity of the improved algorithm is independent of the size of the
large tree. Thus, for our standard use case n� m, where n is the number of nodes in the
large tree and m denotes the average size of the small reference trees, Fast-Plausibility-
Check can achieve much better performance results than the naïve approach.

Figure 3.7 summarizes all presented algorithms and their asymptotic time and space
complexities.

Note that, analogous to Section 3.1, we can also reduce the time complexity of Fast-
Plausibility-Check by a factor of w (vector width of the target architecture) using a
bit-parallel implementation.

23

4. Implementation details

In the following, we present a straightforward implementation of the Plausibility-Check
algorithm. We have implemented the algorithm in C as part of RAxML. Furthermore,
we address how to efficiently implement the fast method from Section 3.3 for extracting
induced subtrees from bifurcating unrooted trees.

4.1 Preprocessing
First of all, we need to preprocess the large phylogenetic tree by assigning preorder identifiers
to every node. Therefore, we root the tree at an arbitrary inner branch and traverse it
to assign preorder identifiers and store them in an array. We will use this array in the
following steps to efficiently look up preorder identifiers for every node.

We now traverse our tree for a second time via an Euler traversal. We can also avoid this
second tree traversal by assigning preorder identifiers on the fly during the Euler traversal.
However, this method requires additional memory for marking already visited nodes. Note
that, the resulting array consists of 4n− 5 entries because the Euler traversal visits n− 2
inner nodes (all inner nodes except for the root) three times, all n leaves once and the root
4 times. To further optimize the induced tree reconstruction phase, we use an additional
array, which we denote as FastLookUp, that stores the index of the first appearance of
each taxon during the Euler tour. This information allows us to speed up RMQ queries in
the reconstruction phase and we can also compute it on-the-fly during the Euler traversal.

While we choose to use arrays for storing node information such as preorder identifiers or
Euler labels, one could also use hash tables to reduce memory requirements or list data
structures, for instance.

Based on the Euler tour, we can now construct a RMQ data structure. for this, we use the
source code developed by Fischer et al. [FH07] which we modify and adapt to our purposes.

4.2 Reconstruction
Initially, we extract the leaf set from our small reference tree by traversing the small tree
and storing its taxon set in an auxiliary array called SmallTreeTaxa. As before, we
denote the number of taxa in the small reference tree by m. In the following, we use
SmallTreeTaxa each time we need to iterate through the leaf set of the small tree.

25

4. Implementation details

As before, we denote the number of taxa in the small reference tree by m. Now, for every
taxon in the reference tree we look up at which index position it first appeared in the Euler
tour using the FastLookUp array. Because of the auxiliary FastLookUp array, this
procedure has a time complexity of O(m). Without this additional array, we would have
to search through the entire Euler tour to find the corresponding indices, which would
require O(nm) time. Thereafter, we sort all resulting indices in ascending order using
quicksort. Note that, this is analogous to sorting the preorder identifiers, which is necessary
for computing the induced tree as outlined in Section 3.3. By querying the RMQ data
structure, we can now find the least common ancestor of two taxa in constant time and
reconstruct the induced tree using Algorithm 3.7.

4.3 Extracting Bipartitions
To finally compute the RF distance, we extract all non-trivial bipartitions by traversing
the small reference tree and the induced tree using the bipartition hash function which has
been thoroughly discussed by Pattengale et al. [PABE+09].

To reduce memory consumption and to improve running times, we store bipartitions in
bit vectors with m instead of n bits. We achieve this, by consistently using the taxon
indices from SmallTreeTaxa instead of the original taxon index in the large tree. Bit
vectors are well suited for storing sets with a pre-defined number of m elements such as
bipartitions. They only need Θ(m) bits of space and can be copied efficiently with C
functions like memcpy(). These bit vectors are then hashed to a hash table and can be
looked up efficiently.

As stated earlier in Section 3.3, it is possible to extract all non-trivial bipartitions directly
from the preorder sequence without relying on an instance of a tree structure, as outlined
in Algorithm 3.8. We deploy this approach because it does not require building the induced
tree at all.

However, for both implementation options, we need a mechanism to avoid storing (and thus
checking for) complementary bipartitions. To avoid distinct, yet identical representations
of one and the same bipartition (the bipartition and its bit-wise complement), we hash
bipartitions in a canonical way. We only hash a bipartition if it contains a specific taxon
(in our case the first taxon in SmallTreeTaxa). If our bit vector does not contain the
specific taxon, we compute and then hash its complement instead.

26

5. Evaluation

In the following we describe the experimental setup and provide a comparative perfor-
mance analysis between Fast-Plausibility-Check and Naive-Plausibility-Check on
simulated as well as real phylogenetic data.

5.1 Test Datasets
For conducting experiments we extracted real-world data and generated synthetic data.
Both datasets are available for download at http://www.exelixis-lab.org/material/
plausibilityChecker.tar.bz2.

5.1.1 Real-world Datasets
For real-world data tests, we used the mega-phylogeny of 55 473 plant species by Smith et
al. [SASD11]. To obtain a reference tree set, we queried all trees in STBase [MDFB+13]
which are proper subsets of the large tree. Our reference tree set consists of 175 830 trees
containing 4 up to 2 065 taxa.

5.1.2 Simulated Datasets
As large trees, we used 15 trees with 150 up to 2 554 taxa from [PSM10] that are available
for download at http://lcbb.epfl.ch/BS.tar.bz2. For each large tree, we generated
30 000 corresponding reference trees containing 64 taxa. We used the following procedure
to simulate and build the reference trees: First we extract the taxon labels of the large
tree. Thereafter, we randomly select a proper subset of these taxa and construct the trees
using an algorithm that is similar to Algorithm 3.7.

Moreover, we also want to assess how long it will take our algorithm to run on a very
large number of reference trees for a mega-phylogeny. To this end, we extracted 1 million
reference trees with 128 taxa each, from the empirical mega-phylogeny with 55 000 taxa.

5.2 Experimental Results
All experiments were conducted on a 2.2 GHz AMD Opteron 6174 CPU running 64-bit
Linux Ubuntu. We invoked the plausibility check algorithm as implemented in standard
RAxML with following command:

raxmlHPC-AVX -f R -m GTRCAT -t largetree -z referencetrees -n T1

In all experiments, we verified that both algorithms yield exactly identical results.

27

http://www.exelixis-lab.org/material/plausibilityChecker.tar.bz2
http://www.exelixis-lab.org/material/plausibilityChecker.tar.bz2
http://lcbb.epfl.ch/BS.tar.bz2

5. Evaluation

5.2.1 Mega-phylogeny

For the mega-phylogeny, we obtain an average relative RF distance of 0.318 (see Table
5.1) between the large tree and the reference trees from STBase. We consider this average
topological distance of approximately 32% to be rather low, because of the substantially
larger tree search space for the 55K taxon tree. For a tree with 2 000 taxa there are
about 3.00× 106 328 possible unrooted tree topologies, whereas for 55 000 taxa there exist
approximately 2.94× 10253 380 possible unrooted tree topologies. In other words, the tree
search space of the 55K taxon tree is about 10247 052 times larger than for the 2 000 taxon
tree. Taking into account that, different procedures were used to automatically construct
the corresponding alignments, and that, the trees have also partially been constructed
from different genes, an average error of around 30% appears to be low. However, the
interpretation of these results is subject to an in-depth empirical analysis which is beyond
the scope of this thesis.

Fig. 5.2 illustrates the overall distribution of RF distances, whereas Fig. 5.1 shows the
corresponding distribution for the 20 000 largest reference trees. Using our improved
algorithm, we can process the 175 830 small reference trees five orders of magnitude faster
than with the naïve algorithm. In total, the naïve algorithm required 67 644 s for all
reference trees, while the effective algorithm required less than 7.14 s, after a preprocessing
time of 0.042 s. If we only consider the inducing steps and ignore the time for parsing every
single tree, the naïve algorithm needs 67 640 s for reconstructing the induced tree whereas
the effective approach only takes 3.11 s. Hence, the effective algorithm is five orders of
magnitude faster than the naïve version.

5.2.2 Simulated data

The naïve algorithm needs more time for larger phylogenies as discussed in Section 3.1
because it iterates over all taxa of the large tree for each small tree. In contrast to this, our
new approach only preprocesses the large tree once. As we show in Fig. 5.5, the run-time
of the effective algorithm is independent of the input tree size. It induces the subtree in
time that is proportional to the size of each small tree. This yields a significant run-time
improvement for our new algorithm (see Table 5.2). In the following, we calculated the
speedup by comparing the run times for the inducing step in both algorithms. Fig. 5.3
shows the speedup for the optimized induced subtree version of Plausibility-Check
compared to the naïve approach. As theoretically expected, the speedup improves with
increasing size of the input phylogeny T . For example, on the large tree with 2 458 tips,
the effective approach is about 19 times faster than the naïve algorithm which is consistent
with our theory. In each run, the naïve algorithm has to traverse the large tree which
is about 40 times the size of the small tree (64 tips), whereas the efficient method only
traverses the small reference trees. However, due to additional sorting and traversing of the
small tree, we suffer a loss in run-time performance which explains the resulting speedup.
If the difference between the size of the large tree and the small reference tree is small, both
algorithms will have approximately the same run-time. However, this is not the standard
use case for our algorithm. Fig. 5.4 shows the overall execution times for both algorithms,

Average Robinson-Foulds distance 0.318
Total time for inducing (naïve) 67 640.00 s
Total time for inducing (improved) 3.11 s
Total execution time (naïve) 67 643.00 s
Total execution time (improved) 7.14 s

Table 5.1: Test results for a mega-phylogeny of 55 473 taxa

28

5.2. Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y
 [

-]

Relative RF distance [-]

Figure 5.1: Distribution of relative RF distances for the 20 000 largest reference trees (30
up to 2 065 taxa)

while Fig. 3.5 shows the preprocessing time for the effective algorithm which depends on
the size of T . The preprocessing time is negligible compared to the overall execution time.
Table 5.3 illustrates the huge differences between the effective and the naïve algorithm on
extremely large data sets. For one million reference trees, our naïve algorithm required 113
hours (ca. five days) whereas the effective algorithm required less than 8 minutes.

29

5. Evaluation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y
 [

-]

Relative RF distance [-]

Figure 5.2: Distribution of all relative RF distances between the large mega-phylogeny and
the reference trees from STBase.

of
taxa in
large
tree

Inducing
time

(naïve)

Inducing
time
(im-

proved)

Preprocessing
time

Overall
execu-

tion time
(naïve)

Overall
execu-

tion time
(effec-
tive)

150 1.805363 2.21387 0.00030 3.200785 3.959420
218 2.173332 2.27510 0.00031 3.614717 3.989973
354 3.318583 2.30837 0.00036 4.935320 4.178407
404 3.683192 2.42039 0.00037 4.904781 4.053480
500 4.318119 2.26976 0.00038 5.648583 3.990615
628 6.077749 2.36570 0.00046 7.312694 3.895842
714 7.063149 2.36753 0.00048 8.399326 3.897443
994 10.290771 2.35056 0.00056 11.840957 4.079138

1 288 16.531953 2.33238 0.00077 18.346817 4.078463
1 481 20.654801 2.44133 0.00080 22.444981 4.134798
1 604 23.317732 2.45706 0.00086 25.385845 4.269186
1 908 29.793863 2.44010 0.00100 31.903671 4.188301
2 000 30.726621 2.43945 0.00106 32.648712 4.050954
2 308 39.535349 2.39014 0.00119 41.739811 4.157518
2 554 46.642499 2.48903 0.00125 48.698793 4.498240

Table 5.2: Test results for different input tree sizes (150 - 2 554 taxa). We executed the
algorithm on 30 000 small trees for each run. Each small tree contains exactly
64 taxa.

of taxa in large tree 55 473
of small trees 1 000 000
Total time for inducing (naïve) 406 159.00 s
Preprocessing time 0.045 s
Total time for inducing (improved) 238.37 s
Total execution time (naïve) 405 902.00 s
Total execution time (improved) 448.40 s

Table 5.3: Test results for one million simulated reference trees (each containing 128 taxa)

30

5.2. Experimental Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 130 330 530 730 930 1130 1330 1530 1730 1930 2130 2330 2530

S
p

e
e

d
u

p
 [

-]

Number of species in large tree [-]

Figure 5.3: Speedup of the effective inducing tree approach. We calculate the speedup by
dividing the overall naïve inducing time with the effective inducing time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 130 330 530 730 930 1130 1330 1530 1730 1930 2130 2330 2530

T
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Number of species in large tree [-]

naive
effective

Figure 5.4: Total execution time of the naïve algorithm (dashed) compared to the effective
approach (dotted)

31

5. Evaluation

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 130 330 530 730 930 1130 1330 1530 1730 1930 2130 2330 2530

T
im

e
 [
s
]

Number of species in large tree [-]

inducing
overall

Figure 5.5: Running time of the effective inducing step (dashed) compared to the overall
execution time of the effective algorithm (dotted)

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 130 330 530 730 930 1130 1330 1530 1730 1930 2130 2330 2530

P
re

p
ro

c
e
s
s
in

g
 t
im

e
 [
s
]

Number of species in large tree [-]

Figure 5.6: Time needed for the preprocessing step of the effective algorithm

32

6. Conclusion

In view of the increasing popularity of megaphylogeny approaches in biological studies
[GCM+09, SASD11], one of the main challenges is to assess the plausibility of such large
phylogenies. Because of the availability of a large number of curated smaller phylogenies,
the methods and software we introduce here, allow to automatically assess and quantify
the plausibility of such large trees. Moreover, they can be used to compare such large
phylogenies to each other by means of their respective average RF distances to the small
trees. Here, we use the RF distance metric, but any other, potentially more advanced,
topological distance metric, such as the quartet-distance [BTKL00] for instance, can be
used.

Future Work in Phylogenetics. We consider the average RF distance of 32% we
obtained using empirical reference trees for the 55K taxon tree to be surprisingly small with
respect to the size of the tree search space. The histograms with the distribution of the
RF distances can be used to identify problematic clades in mega-phylogenies. One could
also establish an iterative procedure that removes taxa from the mega-phylogeny in such a
way that the average RF distance drops below a specific threshold. This may also give rise
to novel optimization problems. For instance, one may consider the problem of finding the
smallest set of taxa to prune, whose removal yields a 10% improvement of the average RF
distance. This kind of optimization problems might also be connected to recent algorithms
for rogue taxon identification [AKS13]. Apart from these practical considerations, we
showed that our method runs in O(km) or O(km log m) time. This is an important finding
because the time complexity, except for the preprocessing phase, is independent of the size
of the mostly very large input phylogeny. Our experimental findings are in line with our
theoretical results and the implementation exhibits a substantial speedup over the naïve
algorithm. Nevertheless, there are still several open problems that need to be addressed. Is
it possible to design an algorithm for our method which runs in linear time as a function of
the leaf set of the small reference tree? Furthermore, our method examines the extent to
which a large phylogeny corresponds to existing, smaller phylogenies. At present, the small
trees have to contain a proper taxon subset of the large phylogeny. An open problem is how
to handle small trees that contain taxa which do not form part of the large tree. Finally,
we simply do not know if large trees that attain high plausibility scores (low average RF
distance) do indeed better represent the evolutionary history of the organisms at hand.

Future Work in Other Fields. Besides its application in phylogenetics, one could also
consider adapting Plausibility-Check for other purposes such as information retrieval.

33

6. Conclusion

For instance, given a HTML or XML document, which can be represented as a tree
structure, it is often useful to know whether or not a particular subtree structure is part
of the document. Using an adapted version of our algorithm, one can think of comparing
the document structure with thousands of other documents in an efficient way or ranking
pages according to their similiarity. Furthermore, linguists may use the algorithm to parse
trees and thus compute how similar a specific language is to a set of other languages given
their parse trees.

34

Bibliography

[AKS13] Andre J. Aberer, Denis Krompass, and Alexandros Stamatakis. Pruning rogue
taxa improves phylogenetic accuracy: An efficient algorithm and webservice.
Systematic Biology, 62(1):162–166, 2013.

[BC11] Shekhar Borkar and Andrew A. Chien. The future of microprocessors.
Commun. ACM, 54(5):67–77, May 2011.

[BKML+10] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell,
and Eric W. Sayers. Genbank. Nucleic Acids Research, 38(suppl 1):D46–D51,
2010.

[BTKL00] David Bryant, John Tsang, Paul Kearney, and Ming Li. Computing the
quartet distance between evolutionary trees. In Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pages
285–286, Philadelphia, PA, USA, 2000. Society for Industrial and Applied
Mathematics.

[BV93] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure.
SIAM J. Comput., 22(2):221–242, April 1993.

[BW98] James R Brown and Patrick V Warren. Antibiotic discovery: is it all in the
genes? Drug Discovery Today, 3(12):564–566, 1998.

[CT06] Benny Chor and Tamir Tuller. Finding a maximum likelihood tree is hard.
J. ACM, 53(5):722–744, September 2006.

[Dar36] Charles Darwin. The origin of species. Everyman’s library. Dent, 1936.

[Edg04] Robert C. Edgar. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[FBB+00] WM Fitch, RM Bush, CA Bender, K Subbarao, and NJ Cox. The Wilhelmine
E Key 1999 invitational lecture. Predicting the evolution of human influenza
A. Journal of Heredity, 91(3):183–185, 2000.

[Fel78] Joseph Felsenstein. The number of evolutionary trees. Systematic Biology,
27(1):27–33, 1978.

[FH06] Johannes Fischer and Volker Heun. Theoretical and Practical Improvements
on the RMQ-Problem, with applications to LCA and LCE. In Moshe Lewen-
stein and Gabriel Valiente, editors, CPM, volume 4009 of Lecture Notes in
Computer Science, pages 36–48. Springer, 2006.

[FH07] Johannes Fischer and Volker Heun. A New Succinct Representation of RMQ-
Information and Improvements in the Enhanced Suffix Array. In Bo Chen,
Mike Paterson, and Guochuan Zhang, editors, ESCAPE, volume 4614 of
Lecture Notes in Computer Science, pages 459–470. Springer, 2007.

35

Bibliography

[GBT84] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and
related techniques for geometry problems. In Proceedings of the Sixteenth
Annual ACM Symposium on Theory of Computing, STOC ’84, pages 135–143,
New York, NY, USA, 1984. ACM.

[GCM+09] Pablo A. Goloboff, Santiago A. Catalano, J. Marcos Mirande, Claudia A.
Szumik, J. Salvador Arias, Mari Källersjö, and James S. Farris. Phylogenetic
analysis of 73 060 taxa corroborates major eukaryotic groups. Cladistics,
25:211–230, 2009.

[Gre08] T.Ryan Gregory. Understanding evolutionary trees. Evolution: Education
and Outreach, 1(2):121–137, 2008.

[Gus05] Dan Gusfield. Optimal, efficient reconstruction of root-unknown phyloge-
netic networks with constrained and structured recombination. Journal of
Computer and System Sciences, 70(3):381 – 398, 2005. Special Issue on
Bioinformatics II.

[JE02] M. J.A. Eisen, Wu. Phylogenetic analysis and gene functional predictions:
phylogenomics in action. Theoretical population biology, 61(4):481–487, 2002.

[LLB+01] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C
Zody, Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William
FitzHugh, et al. Initial sequencing and analysis of the human genome. Nature,
409(6822):860–921, 2001.

[MDFB+13] Michelle M. McMahon, Akshay Deepak, David Fernández-Baca, Darren Boss,
and Michael J. Sanderson. Stbase: One billion species trees for comparative
biology. submitted ms. 2013.

[MRW02] BernardM.E. Moret, Usman Roshan, and Tandy Warnow. Sequence-length
requirements for phylogenetic methods. In Roderic Guigó and Dan Gusfield,
editors, Algorithms in Bioinformatics, volume 2452 of Lecture Notes in
Computer Science, pages 343–356. Springer Berlin Heidelberg, 2002.

[OHL+08] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips.
GPU computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[PABE+09] Nicholas D. Pattengale, Masoud Alipour, Olaf R. Bininda-Emonds,
Bernard M. Moret, and Alexandros Stamatakis. How many bootstrap repli-
cates are necessary? In Proceedings of the 13th Annual International Con-
ference on Research in Computational Molecular Biology, RECOMB 2009,
pages 184–200, Berlin, Heidelberg, 2009. Springer-Verlag.

[PCD+09] William H. Piel, Lucie Chan, Mark J. Dominus, Jin Ruan, Rutger A. Vos,
and Val Tannen. TreeBASE v. 2: A Database of Phylogenetic Knowledge.
In e-BioSphere 2009, 2009.

[PGM07] Nicholas D. Pattengale, Eric J. Gottlieb, and Bernard M. E. Moret. Efficiently
computing the robinson-foulds metric. Journal of Computational Biology,
14(6):724–735, 2007.

[PSM10] Nicholas D. Pattengale, Krister M. Swenson, and Bernard M. E. Moret.
Uncovering hidden phylogenetic consensus. In Mark Borodovsky, Johann Pe-
ter Gogarten, Teresa M. Przytycka, and Sanguthevar Rajasekaran, editors,
ISBRA, volume 6053 of Lecture Notes in Computer Science, pages 128–139.
Springer, 2010.

36

Bibliography

[RBP12] Béatrice Roure, Denis Baurain, and Hervé Philippe. Impact of missing data
on phylogenies inferred from empirical phylogenomic datasets. Molecular
Biology and Evolution, 2012.

[RC05] Antonis Rokas and Sean B. Carroll. More genes or more taxa? the relative
contribution of gene number and taxon number to phylogenetic accuracy.
Molecular Biology and Evolution, 22(5):1337–1344, 2005.

[RF81] D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathe-
matical Biosciences, 53:131–147, 1981.

[RTvdM+12] Fredrik Ronquist, Maxim Teslenko, Paul van der Mark, Daniel L. Ayres,
Aaron Darling, Sebastian Höhna, Bret Larget, Liang Liu, Marc A. Suchard,
and John P. Huelsenbeck. Mrbayes 3.2: Efficient bayesian phylogenetic
inference and model choice across a large model space. Systematic Biology,
2012.

[RUN98] Mostafa Ronaghi, Mathias Uhlén, and Pål Nyrén. A sequencing method
based on real-time pyrophosphate. Science, 281(5375):363–365, 1998.

[SASD11] Alexandros Stamatakis Stephen A. Smith, Jeremy M. Beaulieu and Michael J.
Donoghue. Understanding angiosperm diversification using small and large
phylogenetic trees. American Journal of Botany, 98(3):404–414, 2011.

[SKS94] I.N. Shindyalov, N.A. Kolchanov, and C. Sander. Can three-dimensional
contacts in protein structures be predicted by analysis of correlated mutations?
Protein Engineering, 7(3):349–358, 1994.

[Sta06] Alexandros Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylo-
genetic analyses with thousands of taxa and mixed models. Bioinformatics,
22(21):2688–2690, 2006.

[Wie03] John J. Wiens. Missing data, incomplete taxa, and phylogenetic accuracy.
Systematic Biology, 52(4):528–538, 2003.

37

	Contents
	1 Introduction
	1.1 Scientific Contribution
	1.2 Structure of the thesis

	2 Preliminaries
	2.1 Phylogenetic Trees: Representation and Terminology
	2.2 Definitions

	3 Automated Plausibility Analysis
	3.1 A naïve approach
	3.1.1 Overview
	3.1.2 Extracting Bipartitions
	3.1.3 Computing Induced Bipartitions
	3.1.4 Discussion

	3.2 Towards a faster method
	3.3 An improved algorithm
	3.3.1 Overview
	3.3.2 Preprocessing
	3.3.3 Computing Lowest Common Ancestors
	3.3.4 Constructing Induced tree
	3.3.5 Computing Induced Bipartitions
	3.3.6 Two variants
	3.3.7 Discussion

	4 Implementation details
	4.1 Preprocessing
	4.2 Reconstruction
	4.3 Extracting Bipartitions

	5 Evaluation
	5.1 Test Datasets
	5.1.1 Real-world Datasets
	5.1.2 Simulated Datasets

	5.2 Experimental Results
	5.2.1 Mega-phylogeny
	5.2.2 Simulated data

	6 Conclusion
	Bibliography

