
Heidelberg University

Institute for Computer Science

Database Systems Research Group

Master's thesis

Algorithms for Model Assignment in
Multi-Gene Phylogenetics

Name: Jörg Hauser

E-mail: joerhau@gmail.com

Matriculation Number: 2848153

Supervisors: Prof. Dr. Michael Gertz

Prof. Dr. Alexandros Stamatakis

Date: August 31, 2012

Ich versichere, dass ich diese Master-Arbeit selbstständig verfasst und nur die

angegebenen Quellen und Hilfsmittel verwendet habe.

Abgabedatum: August 31, 2012

Zusammenfassung

Die Maximum-Likelihood-Methode ist ein beliebter Ansatz um Evolutionsbäume aus

genetischen Daten zu rekonstrukieren. Zu diesem Zweck werden stochastische Mod-

elle angewendet, welche die Häu�gkeiten von Mutationen spezi�zieren. Je nach Wahl

des Modells, kann die Plausibilität eines Baumes unterschiedlich sein. Deshalb sollten

Modellezuweisungen anhand von angemessen und objektiven Kriterien getro�en werden.

Häu�g werden allen Partitionen in Multi-Gene Analysen das gleiche Modell zugewiesen.

Allerdings ermöglicht die Verwendung eines gemeinsamen Models keine genspezi�schen

Variationen.

In dieser Arbeit wird das kombinatorische Optimierungsproblem der Proteinmodel-

lzuordnung vorgestellt. Dieses beschreibt die Aufgabe unterschiedliche Protein Modelle

verschiedenen genetischen Partitionen zuzuweisen. Angestrebt wird ein Modell für jede

Partition, welches den Likelihoodscore maximiert. Die Komplexität der Proteinmod-

ellzuordnung wächst exponentiell mit der Anzahl der in den daten enthaltenen Gene.

Daher scheint eine vollständige Evaluaierung aller Modell-Partitionszuordnungen nicht

machbar.

Wegen der schnell wachsenden Verfügbarkeit von Daten für komplette Genome, ist es

wichtig e�ziente Methoden bereitzustellen um geeignete Modellzuweisungen tre�en zu

können. In dieser Arbeit, werden verschiedene Algorithmen für solche Modellzuweisun-

gen entwickeln und evaluiert.

iii

Abstract

The maximum likelihood method is a frequently applied approach to infer phylogenetic

(evolutionary) trees from genetic data. For this purpose stochastic models are applied

that specify the rates at which mutations occur. Depending on the model-choice, the

plausibility of phylogenies can be di�erent. Therefore, one wants to assign models

reasonably. Frequently only one common model is used for distinct genetic partitions

for multi-gene phylogenetic inferences. However, this does not allow for gene-speci�c

variation of rates.

In this thesis we introduce the combinatorial optimization problem of protein model

assignment. This problem describes the task of appropriately specifying di�erent pro-

tein models to distinct genetic partitions. That is, we strive to �nd a model for each

partition such that the likelihood score is maximized. The complexity of this task grows

exponentially with the number of genes included in the data. Therefore, it does not to

seem to be feasible to exhaustively evaluate all model to partition assignments.

However, it is important to provide objective approaches to quickly determine appro-

priate model assignments, because of the vastly growing availability of data for whole

genomes. Therefore, we also develop and evaluate heuristics to estimate partition dis-

tinct model assignments for the use in multi-gene phylogenetics.

iv

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Challenges . 3

1.3 Contribution . 5

1.4 Structure of the Thesis . 5

2 Computational Molecular Phylogenetics 6

2.1 Principles . 6

2.2 Multiple Sequence Alignment . 7

2.3 Phylogenetic Inference . 9

2.3.1 Tree-Space . 9

2.3.2 Conceptual Models . 10

2.3.3 Heuristic Tree-Search . 15

2.4 Models of Evolution . 16

2.4.1 Transition-Probability Matrix . 16

2.4.2 Mechanistic vs. Empirical Models 18

2.4.3 Common Protein Models . 19

2.4.4 Model Derivates . 19

3 Multi-Gene Model Selection 22

3.1 Related Work and Objectives . 22

3.2 Protein Model Assignment . 26

4 Algorithmic Approaches 29

4.1 Objectives and Overview . 29

4.2 PMA Heuristics . 31

4.2.1 Naïve Heuristics . 31

4.2.2 Greedy Assignment Composition 33

4.2.3 Hill-Climbing . 34

4.2.4 Simulated Annealing . 37

v

Contents

4.2.5 Genetic Algorithm . 40

5 Improving Performance 44

5.1 Seeding and Pipelining . 44

5.2 Search-Space Reduction by Model Clustering 45

5.3 Reducing Assignment Evaluation Costs 49

5.3.1 Lazy Likelihood Computations 49

5.3.2 Approximate Assignment Scoring 50

6 Experimental Setup and Results 54

6.1 Preliminaries . 54

6.2 Key Questions . 55

6.3 Results . 57

6.3.1 Importance of Protein Model Assignment 57

6.3.2 Parameter Setting . 58

6.3.3 Suitability of Basic Heuristics . 63

6.3.4 E�ect of Algorithmic Improvements 63

6.3.5 Performance Evaluation . 67

7 Conclusions and Outlook 69

7.1 Summary and Conclusions . 69

7.2 Future Work . 70

Bibliography 72

vi

1 Introduction

This introductory chapter provides the motivation for research in the �eld of phyloge-

netics. It also describes the basic context and contribution of this work.

1.1 Context and Motivation

Humans have been interested in disentangling the origin of life for a long time. As

early as 1859, Darwin published his famous evolutionary theory of natural selection

[19]. He introduced the idea of generations of species evolving according to a branching

paradigm, thereby, resulting in the observable diversity of life. Furthermore, Darwin is

known as the �rst to have sketched an evolutionary tree. Since that time, many methods

to reconstruct evolution have been developed.

The task of determining the evolutionary relationships among species is called phylo-

genetics. Usually knowledge of evolution is summarized in phylogenetic trees (also called

phylogenies). Figure 1.1 provides a phylogenetic tree for the relationship of mankind and

its closest relatives (apes). Entities (nodes) in phylogenies can be entire species (e.g.,

humans and apes evolved from a common ancestor), groups of species (e.g., hominidae)

or even individuals (e.g., this person is an ancestor of that person). Leaf-nodes (tips) are

referred to by the term taxon (or plural taxa). Within this thesis taxa and species are

used synonymously. Inner nodes of trees represent hypothetic common ancestors, which

are unknown (they are extinct and thus not observable anymore). Branches (edges)

of a phylogeny correspond to evolutionary distance among the connected nodes (e.g.,

time or divergence). If comparatively high divergence is expected, the edges are longer.

For the tree depicted in Figure 1.1, no branch lengths are shown. Usually a strictly

bifurcating (complete binary) tree structure is assumed. Hence, every inner node has

degree 3. Phylogenies can either be rooted, at the most recent common ancestor of all

tips, or unrooted (i.e., not making any statement about the root).

Traditionally, the existence of the three domains of life bacteria, archaea (�ancient�

bacteria), and eukaryotes (organisms with complex cell structures) is broadly accepted,

1

1 Introduction

Figure 1.1: Relationship of mankind and apes as estimated by Purvis in [60]. From left
to right, orangutan, gorilla, human, bonobo and chimpanzee. Source: [53]

based on the work of Woese and Fox in [80]. Recently Boyer et al. argued in [10] that

the existence of an additional 4th domain may be plausible, namely Nucleocytoplasmic

Large DNA Viruses (NCLDV). Figure 1.2 illustrates the four domains. Usually, the goal

is to organize members of only one domain in phylogenetic trees. Reconstructing the

comprehensive (containing all known living species) tree of life (see http://tolweb.

org/) is one of the major challenges of the 21st century.

Besides the pure scienti�c motivation for research in phylogenetics, there are practical

aspects, too. For example, methods to improve knowledge about the evolution of organ-

isms help in drug development (see [8]). This is also the reason why viral evolution has

received considerable attention. Viruses evolve fast compared to most other organisms,

so that they diversify rapidly. Commonly, there are too many drugs to test against a

new virus. If we knew which known virus mutated into the new one, health professionals

could focus on testing speci�c drugs that cured the old one. This can speed up the drug

development process and also decrease costs.

Every living organism contains genetic information. The amount and its distribution

along the genome depends on the species. The term genome refers to the entirety of the

genetic information of an individual organism. Genes, in contrast, are usually thought

to represent a speci�c trait of the organism, such as the hair color. Thus, genes are

speci�c parts of the genome. In practice, the de�nition of a gene is debatable (see [54]).

There even exists an entire scienti�c area called genetics that investigates the properties

of genes. To abstract from this question, we interpret genes as meaningful partitions

2

http://tolweb.org/
http://tolweb.org/

1 Introduction

Figure 1.2: Domains of life, assuming that there are four domains. Source: [10]

of the genome. Therefore, genes and gene boundaries are given. The terms gene and

partition are used interchangeably.

Historically, evolutionary trees were inferred morphologically. In morphological phy-

logenetics visually observable properties, that is, shape or behavior of the organisms,

served for reconstructing evolution. Nowadays, computational data-driven phylogenetic

methods are predominant. Usually, these methods use genetic data (i.e., molecular infor-

mation). Therefore, they are of outstanding importance especially for microorganisms,

because comparison on morphological properties is di�cult for such small organisms.

Computational molecular phylogenetics use di�erences (mutations) in deoxyribonucleic

acid (DNA, i.e., molecules composed of nucleotides) or protein (i.e., molecules composed

of amino acids) data to compute evolutionary trees. Correlations as well as di�erences

between computational and morphological phylogenetic methods have been investigated

by Renaud et al. in [64]. Although both approaches are valuable from a biologist's point

of view, only computational molecular phylogenetics (also called phylogenomics when

multi-gene or whole-genome data is used) will be discussed in this work.

1.2 Challenges

Sequencing techniques are improving rapidly and reduce laboratory e�ort and cost to

retrieve genetic information. Recently, even a USB stick that can sequence genetic data

in seconds was presented in [29]. In the past decades, the amount of genetic data in

3

1 Introduction

biological databases like GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) or the

EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) have drastically

increased. At the same time, the number of species for which whole genomes are available

is growing. Therefore, in an increasing number of studies, multi-gene (i.e., concatenated

genes) data are used to infer phylogenies.

There exist several computational methods to infer evolutionary trees from molecular

data. Two of them (Maximum likelihood (ML) and Bayesian methods of phylogenetic

inference) are widely accepted and tend to yield best overall results. Both rely on the

usage of �exible and explicit stochastic evolutionary models. These models specify the

rate (and therefore the probability) at which mutations occur. For DNA data the rates

can be adjusted to the data at hand. Similar adaptations are more di�cult for protein

data (because there are more amino acid states than deoxyribonucleic acid states, see

Section 2.1). Consequently, mutation rates are usually �x for protein models. Thus, with

a speci�c model all rates are given, and exactly the same stochastic process is assumed to

describe di�erent data. In other words, distinct DNA models specify a di�erent amount

of freedom, whereas distinct protein models �x mutation rates at di�erent values.

One important aspect, which motivates the research in this thesis on multi-gene model

assignment, is that distinct genes can evolve under distinct stochastic models. For exam-

ple, some genes evolve slowly (encounter low mutation rates) and some fast. Phylogenies

inferred from distinct genes may show di�erent topologies, that is, the evolutionary dis-

tance between species depends on the gene under study. DNA models account for this

by using a single model, because mutation rates can be adjusted for every partition

separately (using a single DNA model, only the �amount of freedom�, not the rates are

speci�ed). As protein models have �xed mutation rates, the model usage can consider-

ably in�uence resulting phylogenies. Therefore, it is important to suitably choose the

model for every gene. Unfortunately, it is unknown which genes tend to mutate accord-

ing to which protein model under which environmental circumstances. Therefore, all of

them should be evaluated.

As there are plenty of protein models (each specifying a distinct set of constant rates),

and their number is increasing, it is di�cult to justify the actual model choice. Further-

more, the di�culty of this task grows exponentially with the number of genes included

in phylogenetic analyses. Since every assignment of models to partitions (model assign-

ment) may yields a di�erent phylogeny, ideally every combination should be evaluated.

However, there exist mn distinct assignments of m models to n genes. Thus, it does

it is not feasible to evaluate every assignment for large n, because a polynomial time

algorithm does not seem to exist.

4

http://www.ncbi.nlm.nih.gov/Genbank/
http://www.ebi.ac.uk/embl/

1 Introduction

1.3 Contribution

This work aims at providing e�cient methods to obtain suitable model assignments for

multi-gene phylogenetic analyses. Because of the exponential growth of the number of

assignments, heuristics must be applied to search for suitable model assignments. Al-

though, heuristics help to deal with the immense number of distinct assignments, they

su�er from the computationally expensive evaluation of a single assignment. Further-

more, they do not guarantee to �nd the best solution. However, they provide a feasible

approach to �nd a �good enough� model assignment.

To develop heuristic strategies we introduce the protein model assignment (PMA)

problem (i.e., the problem of adequately assigning models to multi-gene protein data)

in terms of a combinatorial optimization problem. The PMA problem can be important

for many protein-bases phylogenomic analysis. To search for optimal PMA we adapt

deterministic and randomized search heuristics and assess promising combinations of

these self-contained heuristics to improve their performance. Furthermore, we develop

algorithmic optimizations by including domain speci�c knowledge. These optimizations

are able to signi�cantly decrease the execution time of the heuristics. In particular we

present a clustering approach, to guide heuristics to high quality model assignments.

Furthermore, we exploit changes to the evaluation of the likelihood score to reduce the

runtime of included numerical optimization algorithms and apply an archive to provide

the scores of already evaluated assignments. These changes do not impact the result

quality of the heuristics. Lastly, we develop a strategy to approximate the potential

of an assignment (i.e., to pre-score assignments before actually evaluating them). This

strategy can, however, impact the result quality negatively because it prunes major parts

from the search-space. Finally, we evaluate our heuristics and improvement strategies

on real and synthetic data to assess their usefulness.

1.4 Structure of the Thesis

The thesis is structured as follows. First, the basics of molecular phylogenetic inference

are brie�y presented in Chapter 2. Chapter 3 reviews related work on model-selection.

In Chapter 4 we focus on establishing various heuristics for model assignment. There-

after, we develop algorithmic optimizations to reduce computational requirements in

Chapter 5. The evaluation of the proposed heuristics and algorithmic optimizations

takes place in Chapter 6. Conclusions and an outlook are provided in Chapter 7.

5

2 Computational Molecular

Phylogenetics

This chapter describes the basics of computational phylogenetic inference. The goal is

to provide the necessary background knowledge for non-biologists. In [83] Yang provides

a comprehensive overview of computational molecular phylogenetic methods.

Initially, (Section 2.1) the basic concepts and goals will be explained. Section 2.2

describes the necessary preprocessing task of sequence alignment, which is required for

most phylogenetic analyses. In Section 2.3 we will take a closer look at phylogenetic

inference methods. The most important concept for this thesis�protein substitution

models�will be explained in Section 2.4.

2.1 Principles

Computational molecular phylogenetic approaches infer evolutionary relationship from

genetic information, that is, molecular (usually DNA or protein) data. In this work only

the computational aspects are covered. Therefore, it is su�cient to consider genetic

information to be sequences of DNA bases or amino acids. To abstract from chemical

properties, sequences are represented as character strings. The characters stand for the

molecules' components. For DNA A,C,G, and T represent adenine, cytosine, guanine, and

thymine (i.e., bases of DNA or nucleotides). For proteins there are twenty amino acids.

Their usual character-mapping is based on [15] and shown in Table 2.1.

Di�erences in the sequences of distinct organisms are used to reconstruct evolutionary

histories. The di�erences are a result of evolution and express mutations of molecules.

One di�erentiates mutations that can be observed in the data from others which may

have happened, but are not observable anymore (e.g., because they were disadvantageous

and have been �thrown away� by selection, or because they were intermediate mutations

only). Observable mutations are called point accepted mutations.

6

2 Computational Molecular Phylogenetics

Amino Acid 1-Letter
Alanine A

Arginine R

Asparagine N

Aspartic acid D

Cysteine C

Glutamic acid E

Glutamine Q

Glycine G

Histidine H

Isoleucine I

Amino Acid 1-Letter
Leucine L

Lysine K

Methionine M

Phenylalanine F

Proline P

Serine S

Threonine T

Tryptophan W

Tyrosine Y

Valine V

Table 2.1: Amino acids and their abbreviations according to [15].

Phylogenetic inference methods can be classi�ed into supertree and supermatrix ap-

proaches (see [21]). Supertree methods aim at analyzing information of distinct genes

and organisms separately (by creating multiple phylogenies). The resulting phylogenies

are merged together afterwards into a comprehensive supertree. The supertree method

used to be the only feasible approach to reconstruct large phylogenies. Supermatrix ap-

proaches, in contrast, aim at analyzing all available data of all organisms simultaneously

(thus, generating only one phylogeny�the supermatrix tree). One expects an increasing

evolutionary signal by the concatenation of genes of many taxa, as well as a decrease of

noise. This is a major advantage of supermatrix over supertree approaches.

2.2 Multiple Sequence Alignment

Molecular evolution consists of substitutions (A → R), insertions (AI → ACI) and dele-

tions (ACI → AI) of characters in sequences. Insertions and deletions are often termed

indels.

Because of indels, sequences of di�erent organisms do not necessarily have the same

length. In order to compare two molecular sequences of di�erent length, a sequence

alignment must be computed �rst. For example, consider two species with corresponding

molecular sequences S1 and S2:

S1: N A D A A I

S2: N A A Q I

One could align these sequences as follows:

7

2 Computational Molecular Phylogenetics

S1: N A D A A I

S2: N A - A Q I

Insertion and deletion are complementary events. Depending on whether S1 evolved

from S2, or the other way around, D was either inserted or deleted.

The alignment task involves the minimization of a score function:

Fscore : S1 × S2 → R

Fscore describes the distance of S1 to S2 in a given alignment (the larger the value, the

more di�erent the sequences are). For the example at hand, this function can be de�ned

as:

Fscore =
∑
i

map(S1i , S2i)

with S1i and S2i denoting the ith character of sequence S1 and S2, and a character

mapping function:

map(S1i , S2i) =


2 if S1i = - ∨ S2i = - (indel/gap)

1 if S1i 6= S2i (substitution)

0 else (nothing happend)

This way matching characters are rewarded and gaps are penalized. For the alignment

above, the value of the scoring function is 3 (as there is one indel and one substitution).

Mostly, the overall goal of sequence alignment is to generate two strings of the same

length with as many matching characters for the positions as possible by inserting gaps.

Usually this is done by the application of dynamic programming techniques (see e.g.

Needleman-Wunsch algorithm in [50]).

For more than two sequences, such a mapping is called a multiple sequence alignment.

The amount of sequences can range from a few species to several thousands. Usually, for

multiple sequence alignments the scoring function is de�ned as the sum of all pairwise

scores. For n species this is:

Fscore = F11 + · · ·+ F1n + · · ·+ Fnn

Generating optimal multiple sequence alignments is NP-hard (see [78]). There exist

various approaches to speed up alignment generation and to improve the quality of the

results. The quality of an alignment is of major importance for phylogenetic analyses,

since it is used as input. Therefore, frequently tree quality depends on alignment quality.

8

2 Computational Molecular Phylogenetics

2.3 Phylogenetic Inference

In phylogenetics we search for the best phylogeny given a multiple sequence alignment.

We outline the necessary tasks for this purpose in this section.

In Section 2.3.1 we outline the search-space (the set of possible phylogenies for a given

set of taxa) . Thereafter, two methods to score phylogenies are described in Section 2.3.2.

Finally we present two algorithms to search for the most plausible tree (Section 2.3.3).

2.3.1 Tree-Space

For phylogenetic inference the size of the tree-space is of great importance. Figures 2.1

and 2.2 depict all possible rooted and unrooted binary tree topologies for small sets of

three and four species, respectively. One can easily observe that the number of di�erent

topologies for rooted trees is larger than that for unrooted binary trees. This holds for

all tree sizes with n ≥ 3 species. Table 2.2 lists the numbers of possible trees for some

2

1

3

1 2 3

2

1

3

1 3 2

2

1

3

2 3 1

Figure 2.1: Possible rooted trees and the placement of the root in the corresponding
unrooted tree for three taxa. Arrows in the upper tree denote the placement
of the root within the lower rooted tree. There is only one unrooted tree
topology for three organisms. Source: [55]

values of n. According to Cavalli-Sforza and Edwards (see [13]) for n species there exist

3 · 5 · 7 · · · (2n− 3) =
n∏
i=3

(2i− 3) =
(2n− 3)!

2n−2(n− 2)!

di�erent rooted binary trees. This number decreases slightly to

n∏
i=3

(2i− 5)

9

2 Computational Molecular Phylogenetics

2

1

4

3

1 2 3 4

1 2 3 4

2 1 3 4

3 1 2 4

4 1 2 3

3

1

4

2

1 3 2 4

1 3 2 4

2 3 1 4

3 2 1 4

4 2 1 3

4

1

3

2

1 4 2 3

1 4 2 3

2 4 1 3

3 4 1 2

4 3 1 2

Figure 2.2: Possible rooted and unrooted trees for four taxa. The topmost trees depict
the three possible unrooted topologies. Their rooted equivalents are listed
within the corresponding columns. Source: [55]

for unrooted trees. Usually, no data about the root is available, and hence an unrooted

tree is assumed.

In practice, it is not feasible to evaluate all possible tree-topologies. Therefore heuris-

tics must be applied in order to explore the tree-space and �nd �good� topologies. The

heuristics used in the context of this work are described in Section 2.3.3. Before this, we

describe methods to evaluate the plausibility of a given phylogeny in the next section.

2.3.2 Conceptual Models

Phylogenetic tree inference always relies on assumptions. Assume that we know two

�good� phylogenies of some species. In order to determine which tree is more plausible,

one hast to make hypotheses about the evolutionary process. Analogous to Kelchner and

Thomas in [40], we refer to these hypotheses by the term conceptual model. Commonly,

conceptual models imply an optimality criterion according to which the plausibility of

a tree can be assessed. In the following we outline two popular optimality criteria,

10

2 Computational Molecular Phylogenetics

n No. rooted trees No. unrooted trees
2 1 1
3 3 1
4 15 3
5 105 15
6 945 105
7 10395 945
8 135135 10395
9 2027025 135135
10 34489707 2027025
50 2.8× 1076 3× 1074

Table 2.2: Number of rooted and unrooted trees as a function of the number of taxa n.
Source: [55]

which are used in the context of this thesis�the Maximum Parsimony Criterion and

the Maximum Likelihood Criterion.

Maximum Parsimony

The Maximum Parsimony (MP) criterion assumes that the evolution of sequences is

best explained by the tree with least amount of substitutions. In other words, evolution

is parsimonious. Thus, the tree with the least number of substitutions is considered

to be the one that best explains their evolutionary history. Consequently, the goal

is to minimize the sum of all pairwise (parent ↔ child) Hamming distances ([30]) in

the tree. Put di�erently, the goal is to minimize the number of positions at which

the corresponding states of parents and their children are di�erent. The approach was

described by Edwards and Sforza in [23].

The number of substitutions necessary to construct the observed data for a speci�c

tree is called total score or tree length. To compute the total score of a tree, we sum over

the scores of all alignment sites. Sites that have identical nucleotides for all species can

be neglected as they have zero cost for all possible trees. They are called uninformative

sites. Also sites with less than two di�erent states for more than one taxon per state are

uninformative. Figure 2.3 shows two exemplary trees and their respective parsimony

score for the following alignment containing organisms S1...5

11

2 Computational Molecular Phylogenetics

S1: L A K G N H

S2: L A K G E H

S3: L A K S E H

S4: M A L G W F

S5: T A H S L F

LAKGNH LAKGEH LAKSEH MALGWF TAHSLF

LAKGEH MALGWF

LAKGEH

LAKGEH

1 0

0

0

1 0 4

4

Total cost = 10

LAKGNH LAKGEH LAKSEH MALGWF TAHSLF

LAKGNH MALGWF

MALGWF

MALGWF

0 1

4

0

5

0 4

0

Total cost = 14

Figure 2.3: Maximum Parsimony cost computation. Adapted from [55].

As already mentioned in the introductory chapter (Section 1.1), the sequences of

inner nodes are unknown. Therefore, they are assigned a candidate state per site that

minimizes the score. In order to be able to compute an optimal state the tree must

be rooted. Sets of candidate states can be generated bottom up via a post-order tree

traversal. Figure 2.4 shows the generation of candidate states that minimize the cost for

one site. The states at the leafs (N, E, W, L), which are known, serve as candidate states

({N, E}, {N, E}, {W, L}) for the ancestral nodes. This principle is continued until the root

{N, E, W, L} is reached. Note that the same method can be applied for the remaining

alignment sites.

N E E W L

{N,E} {W,L}

{N,E}

{N,E,W,L}

Figure 2.4: Candidate generation for inner nodes. Shown for site �ve of the left tree of
Figure 2.3. Adapted from [71].

While MP is useful for scenarios where organisms evolved through a few mutations,

it can fail for because of long branch attraction (see [55]).

12

2 Computational Molecular Phylogenetics

Maximum Likelihood

With the Maximum Likelihood (ML) criterion, Felsenstein introduced a probabilistic

conceptual model based on Markov chains in [25]. ML represents a computationally

feasible stochastic approach. ML works better than parsimony if sequences evolved

with many mutations (long branches).

The basic idea is to score candidate trees according to their probability to generate the

observed data (P (data|tree)). The phylogeny that yields the highest value is assumed

to be the �best� one. ML (like the Maximum Parsimony criterion) assumes independent

evolution among sites (i.e., the evolution of one site does not in�uence its neighbors).

Although this is a restrictive and unrealistic assumption from a biological perspective

(especially with respect to insertions and deletions), it is necessary for computational

reasons (see [25]). The main di�erences to MP are that minimal evolution is not assumed

and that substitution pairs can be scored di�erently. Accordingly, a major advantage is

the speci�cation of explicit probabilistic models of evolution.

P (data|tree) is usually called the likelihood of the tree. It is important to note,

that the likelihood of a tree is not the probability of the tree to be the correct one

(P (data|tree) 6= P (tree|data)). This is why the likelihood values of all possible trees do

not sum to 1.0. Recently Bayesian approaches for phylogenetic inference have also been

introduced in [84]. They compute the posterior probability of the data producing the

tree (P (tree|data)). That is, the probabilities of all phylogenies sum to 1.0.

The likelihood is evaluated via a Markov process that is computed by a post-order

traversal of the tree. As common for Markov processes, transitions between states are

independent from their history. That is, the probability of being in state j at time

t + δ, only depends on the probability of being in state i at time t and the transition

probability Pij(δ). Hence, the following two ingredients are necessary:

1. prior/initial state probabilities πi. The probabilities of being in each speci�c state

i initially

2. transition probabilities Pij(δ). The probability of changing from state i to state j

within time δ

For the likelihood computation, a rooted tree is necessary. The computation is out-

lined on the tree given in Figure 2.5. The derived formula can easily be extended to any

other tree. Because sites are assumed to be independent, one site su�ces to explain the

principle. The overall likelihood can be computed by multiplying the per-site results.

Figure 2.5 shows a rooted evolutionary tree for three known organisms. Their states

(e.g., observed amino acids) are denoted as S1, S2 and S3. The length of the branches

13

2 Computational Molecular Phylogenetics

S1

S2

S3

S4

S0

e1

e2
e3

e4

Figure 2.5: Simple maximum likelihood tree. Adapted from [25].

are referenced by e1...4. Again, the states of the inner nodes are not known. If they were

known, the likelihood L of the tree could be computed by following the Markov process

from the root node S0 to the tips (S1...3):

L = πS0 · PS0S4(e1) · PS4S1(e2) · PS4S2(e3) · PS0S3(e4)

That is, the likelihood is the product of the prior probability πS0 of state S0 times the

probabilities at each edge. As the inner states are unknown, S0 and S4 could be assigned

any state maximizing the likelihood. That is, the score is the sum of the former formula

over all possible states for S0 and S4:

L =
∑
S0

∑
S4

πS0 · PS0S4(e1) · PS4S1(e2) · PS4S2(e3) · PS0S3(e4)

In analogy to [25, 71] this translates into:

L =
∑
S0

πS0 ·
∑
S4

PS0S4(e1) · PS4S1(e2)︸ ︷︷ ︸
S1 subtree

·PS4S2(e3)︸ ︷︷ ︸
S2 subtree


︸ ︷︷ ︸

S4 subtree

·PS0S3(e4)︸ ︷︷ ︸
S3 subtree

The former equation highlights that the likelihood can be evaluated bottom-up start-

ing at the leafs. Thus, the computation is usually implemented by a postorder tree-

traversal. For a numerical example of the likelihood computation for DNA data see

[83].

Usually, likelihood values are extremely small. Therefore, it is common to compute

the logarithm of the likelihood score�the log likelihood (lnL)�instead. Because the

logarithm is monotonic this does not impact the order of likelihood scores.

For simplicity, we just �xed the branches (e1, e2, and e3) until now. To obtain the ML

14

2 Computational Molecular Phylogenetics

score of a tree, the branch lengths must be adjusted to their optimum value. Mostly,

evolution is assumed to be time-reversible. That is, the evolutionary process is identical

if followed forward or backward in time:

πiPij(δ) = Pji(δ)πj

An important consequence of time reversibility is the so-called pulley principle (see

[26, 83]). We already mentioned that a rooted tree is necessary for the likelihood com-

putation. Luckily, because of the pulley principle, the likelihood score does not depend

on the placement of the root. Therefore, the root can be moved all-over the tree, without

a�ecting the likelihood (as long as the branch lengths remain �xed).

To optimize the branches, the pulley principle is valuable, too. Initially, the branches

are assigned a �reasonable� default value. These values are optimized for each branch

independently by iteratively placing a virtual root into them. The pulley principle avoids

that the likelihood needs to be re-evaluated for the whole tree each time a single branch

is changed. In order to optimize a single branch, its length is adjusted to the value

resulting in the highest likelihood score. In [26], Felsenstein and Churchill, proposed to

use the Newton-Raphson method for this purpose.

2.3.3 Heuristic Tree-Search

In Practice, both MP and ML, su�er from the immense tree-space. A priori every

possible topology can be considered. Therefore, a simple approach could exhaustively

evaluate all trees and pick the most �plausible� one (exhaustive search). Because of

the large number of unrooted trees, an exhaustive search is not feasible for common

optimality criteria. Consequently, heuristics to e�ciently infer �good enough� phylo-

genies are important. Many di�erent heuristics have been developed and implemented

in various software packages. For a comprehensive list, see Joe Felsenstein's website at

http://evolution.genetics.washington.edu/phylip/software.html.

RAxML (Randomized Accelerated Maximum Likelihood) is the acronym of a soft-

ware for Maximum Likelihood based phylogenetic inference, which was presented by

Stamatakis et al. in [72]. RAxML-Light (see [74]), a modi�cation of RAxML, was cho-

sen as the basis to develop and evaluate the approaches described in Chapter 4 and

following, because it is especially designed for large data-sets. Therefore, we rely on the

heuristics implemented in RAxML and RAxML-Light (see [72]). For MP the randomized

stepwise addition algorithm is used, whereas the ML tree search relies on lazy subtree

rearrangements. Both are brie�y outlined in the following.

15

http://evolution.genetics.washington.edu/phylip/software.html

2 Computational Molecular Phylogenetics

Randomized Stepwise Addition: is a greedy heuristic. Its basic idea is to insert,

new, randomly chosen taxa at the best position in a given tree. For this purpose, �rst

a set of three random organisms is chosen to build an unrooted tree. Afterwards, the

remaining organisms are inserted one-by-one at the best-scoring position in random

order. Depending on the insertion order, results can look di�erently every time the

method is invoked. This is acceptable, �rst because phylogenetic analyses are usually

executed multiple times, and second, because parsimony trees are only used as starting

points of the ML search only here (i.e., the tree topology is re�ned at a later point).

Lazy Subtree Rearrangement: uses a comprehensive starting tree (e.g., based on the

randomized stepwise addition algorithm). This is mainly due to close relationship of

Maximum Parsimony and Maximum Likelihood inference, especially for simple evolu-

tionary models (see [72]).

Based on this starting tree (which will serve for the methods proposed in this thesis as

well) the ML score is optimized by pruning and reinserting all subtrees of the starting

tree. Subtrees are pruned and reinserted in-between nodes of range r ∈ N, where r
describes the number of nodes separating the pruning and the reinsertion branch. r is

called the rearrangement setting. This strategy is repeated for the resulting phylogenies

until no better tree can be found.

2.4 Models of Evolution

The Maximum Likelihood criterion includes an explicit, stochastic model of character

evolution. This model is interchangeable without a�ecting the basic idea of ML. In this

section we explain how the selected model in�uences the computation of the likelihood

score and the tree.

We start by presenting the ingredients of a model in Section 2.4.1. Thereafter, we

explain the di�erence between empirical and mechanistic models (Section 2.4.2). In

Section 2.4.3 the most common models for protein data are presented. Finally, we

outline commonly applied approaches to further enhance the models in Section 2.4.4.

2.4.1 Transition-Probability Matrix

A model of molecular substitution speci�es the transition probabilities (Pij(δ)) of the

Markov process. The ability to explicitly specify the properties of the evolutionary

16

2 Computational Molecular Phylogenetics

process provides more the �exibility compared to optimality criteria that have built-

in assumptions (e.g., the Maximum Parsimony criterion). DNA models are even more

�exible than protein models, because substitution rates can be adjusted to the data at

hand. For protein models substitution rates are usually constant, because of the larger

number of possible states. This is also the reason why we outline the basics for DNA

models. The approaches can, however, be easily extended to proteins (see, for example,

[36]).

A model of molecular evolution consists of a matrix Q indicating the rate of every
possible substitution for an in�nitesimal time period:

Q =



A C G T

−aπC − bπG − cπT aπC bπG cπT

aπA −aπA − dπG − eπT dπG eπT

bπA dπC −bπA − dπC − fπT fπT

cπA eπC fπG −cπA − eπC − fπG


For time-reversibility, the substitution rates a, . . . , f ∈ R+ need to be symmetrical. The

base frequencies πA...T are restricted to sum up to 1.0. Note that the diagonal entries

are de�ned, such that each row sums up to 0. Hence −qii gives the substitution rate of

state i. Such models are called general time reversible (GTR) models.

According to [46], the values of the substitution rate matrix translate into a matrix

of transition probabilities for time t as follows:

P (t) = eQt

The major di�erence between DNA and protein evolution models is the size of Q. For

DNA (4 states), Q is a 4 × 4 matrix, whereas for proteins it is a 20 × 20 matrix. The

DNA GTR-model contains 10 parameters (6 substitution rates and 4 base-frequencies).

As the rates are relative, f is usually �xed to 1. Moreover, one frequency πi is given by

the remaining πj (i 6= j) with:

πi = 1−
∑
j

πj

Therefore, there are 8 free parameters, which must be estimated. The number of free

parameters for the GTR model can be given as a function of the number of possible

states n as follows:

n− 1︸ ︷︷ ︸
|frequencies|

+
n2 − n

2
− 1︸ ︷︷ ︸

|exchangeability rates|

Accordingly, for proteins there are 208 free parameters.

17

2 Computational Molecular Phylogenetics

The most simple model assumes equal substitution rates and equal frequencies for

all states. According to the work of Jukes and Cantor in [38] this model is called

JC. However, in practice, this assumption oversimpli�es reality. There are substantial

di�erences between substitution rates. Generally, substitutions between chemically and

physically close states are more frequent than mutations between more distinct states.

Moreover, the genetic code describes which sets of three bases of DNA (called codons)

encode for an amino acid (see [52]). Some amino acids are encoded by one codon and

some by two or more. If there is more than one codon representing an amino acid,

the codons often only di�er by one base. For some amino acid substitutions, two or

more bases of the codon must change. These mutations often have comparatively small

substitution rates. In addition, environmental stress in�uences substitution rates, that

is, some mutations are disadvantageous. Also secondary structure of proteins can impact

substitution rates.

2.4.2 Mechanistic vs. Empirical Models

Models (like the GTR model) that allow for rate estimation using the alignment at hand

are usually called mechanistic models. For empirical models, in contrast, parameters are

derived from a set of large, closely-related alignments. That is, the rates are estimated

on data that is di�erent from that to be analyzed. If empirical models are applied in an

analysis, there are no substitution rates that must be estimated. Usually, mechanistic

models are applied to DNA, and empirical models to protein analyses. Therefore, we

use the terms mechanistic and DNA model, as well as empirical and protein model

synonymously.

DNA models include parameters to adjust them to the actual sequences. Mechanistic

protein models need to include a comparatively high amount of parameters to specify

reasonable rates for all amino acid substitutions. The danger of over�tting and over-

parametrization increases with the number of parameters(see [24]). The more free pa-

rameters a model has the �better� the likelihood will be. However, this is not necessarily

indicative for a better suited model, but probably only the result of higher computa-

tional freedom. Moreover, conducting ML estimates of of mechanistic protein models is

computationally extremely expensive, because of the large number of amino acid states

and free parameters. Therefore, empirical models are mostly used for protein-based ML

inferences.

The �xed substitution rates and amino acid frequencies of empirical protein models

reduce the number of free parameters from 208 for the GTR-model to 0. This is also

18

2 Computational Molecular Phylogenetics

bene�cial because empirical models can be applied to small datasets. On the other

hand, it is not clear which model is appropriate for which data. Additionally, there is

no guarantee that any model is appropriate for the data at hand. However, usually this

decreased �exibility is accepted.

2.4.3 Common Protein Models

One of the �rst empirical protein models was proposed by Dayho� and Schwartz in [20].

They counted over 1,500 mutations in about 100 nuclear encoded proteins, even though

no computer-based alignments were available at this time (1978). Jones et al. used the

same approach in 1992 for 16,300 protein sequences, counting 59,190 mutations. This

model is called JTT. Usually, the JTT model is considered to be more accurate, as it is

based on a larger data sample. In general, the more data is used, the better the resulting

model is expected to be.

Di�erences between the models are due to the data type or the estimation methods.

Every model is based on a di�erent set of alignments. Some models even focus on

speci�c species or speci�c genes (e.g., viral species or mitochondrial genes). This leads

to substantial di�erences in substitution rates among models. Dayho� and Schwartz

already proposed two methods for parameter estimation in their initial work. Whelan

and Goldman argued that the Dayho� approach may lead to systematic error in [79].

They proposed a ML based approach to create the WAG model.

Some models have rather similar rates and origin, whereas some others are quite

distinct. It is di�cult to rationally chose the �best� model for phylogenetic analyses.

Frequently, more than one can be appropriate. Obviously, knowledge of the used data

and methods to create the model can help to choose the model. We do not comprehen-

sively outline these details, though. However, Table 2.3 references the most common

models, which are considered in this thesis.

2.4.4 Model Derivates

Besides the di�erences in substitution rates, there are three adoptions that can be applied

to empirical protein models. These cannot be incorporated into the instantaneous rate

matrix Q. However, they can be estimated on the data at hand.

Firstly, Reeves found in [63] that the �t of any model is vastly improved by allowing a

proportion of sites to be invariant. Certain sites are unlikely to undergo mutations (e.g.,

for functional reasons). Although this fact was known before (see [32, 31]), invariant

19

2 Computational Molecular Phylogenetics

N Acronym Reference Target area/genes
1 Blosum Heniko� and Heniko� in 1992 [34] Nuclear
2 cpREV Adachi et al. in 2000 [5] Plastid
3 Dayho� Dayho� and Schwartz in 1978 [20] Nuclear
4 Dayho�-dcmut Kosiol and Goldman in 2005 [43] Nuclear
5 FLU Cuong et al. in 2010 [17] in�uenza viruses
6 HIVb Nickle et al. in 2007 [51] Retroviral
7 HIVw Nickle et al. in 2007 [51] Retroviral
8 JTT Jones et al. in 1992 [37] Nuclear
9 JTT-dcmut Kosiol and Goldman in 2005 [43] Nuclear
10 LG Le and Gascuel in 2008 [44] Nuclear
11 mtART Abascal et al. in 2007 [3] Mitochondrial
12 mtMAM Cao et al. in 1998 [12] Mitochondrial
13 mtREV Adachi and Hasegawa in 1996 [4] Mitochondrial
14 mtZoa Rota-Stabelli et al. in 2009 [67] Mitochondrial, animals
15 PMB Veerassamy et al. in 2003 [77] Nuclear
16 rtREV Dimmic et al. in 2002 [22] Retroviral
17 VT Müller and Vingron in 2000 [49] Nuclear
18 WAG Whelan and Goldman in 2001 [79] Nuclear

Table 2.3: Common protein evolution models with initial application area (target-genes).

sites were not taken into account. Frequently, invariable sites contain the same amino

acid for all species. Hence, they do not contribute for methods like MP. However, for

ML the probability of not observing a substitution is important. Invariant sites are

commonly indicated by adding +I to the model name.

Similarly, Yang proposed the idea of among site rate variation (also called rate het-

erogeneity) in [82]. For this purpose, substitution rates among sites are described by

a Γ-distribution with shape parameter α. This is also the reason why this option is

usually indicated by +Γ. A small α re�ects signi�cantly varying rates among sites, that

is, few sites with rapid evolution. A large α, in contrast, suggests minimal among-site

variation. Figure 2.6 illustrates the Γ-distribution for three di�erent shape-parameters.

For an in-depth explanation see [55].

Commonly, amino acid frequencies (πi) of empirical protein models are di�erent from

the frequencies in the alignment. In [11], Cao et al. proposed to use the amino acid

frequencies of the data under study. They obtained better phylogenies, especially if the

discrepancies were large. Using the frequencies obtained from the data is referred to +F.

We call this the usage of empirical base frequencies. Note that for mechanistic models,

frequencies are always estimated on the alignment.

20

2 Computational Molecular Phylogenetics

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

α = 0.25

α = 2

α = 5

x

Γ
(x

)

Figure 2.6: The Γ-distribution for di�erent values of α.

Chapter Summary:

This chapter introduced the basic terms and tasks of molecular phylogenetic inference.

The principle of multiple sequence alignment (a preprocessing task in most phylogenetic

analyses) was presented. Additionally we discussed two criteria (Maximum Parsimony

and Maximum Likelihood) to score phylogenetic trees. Both criteria make simpli�ca-

tions, to model the evolutionary process. We call the entirety of these assumptions a

conceptual model. Moreover, the large search space of phylogenetic trees was explained.

Therefore, even if one is willing to accept the assumptions of the criteria, it is not feasible

to �nd the optimal phylogeny for a large number of species.

One of the major factors in�uencing the likelihood score are the rates of state sub-

stitutions. For DNA these rates are usually estimated for the data at hand, whereas

they are mostly derived from �xed data (empirical models) for proteins. There exists

a variety of di�erent empirical models of amino acid substitution. However, a model

suitable for one dataset (i.e., organism or type of genes) is not necessarily suitable for

other datasets. Therefore, it is necessary to objectively specify the applied models for

each phylogenetic analysis.

21

3 Multi-Gene Model Selection

In [13], Cavalli-Sforza and Edwards found that the validity of an inferred phylogeney

strongly depends on the correctness of the underlying model. Therefore, it is important

to use the most appropriate model. This chapter presents approaches for selecting

models for phylogenetic inference.

In Section 3.1 related work on model selection is presented. Afterwards, the model

assignment problem for multi-gene datasets is introduced in Section 3.2.

3.1 Related Work and Objectives

Model selection seeks to �nd the best-�t model given a set of candidate models. Some

models can be organized hierarchically from a complex (parameter rich) version (e.g.,

GTR+Γ+I) to simpler versions (e.g., JC), which are special cases of the complex one.

The number of free parameters in this hierarchy decreases. That is, the simpler model

can be obtained by �xing some parameters of the complex model. We call such models

nested models. In general, more complex (parameter-rich) models �t the data better than

simpler models. This is not necessarily due to the suitability of the model, but can just

be the result of a larger computational freedom. To select the best-�t model, all models

and options must be evaluated. This includes parameter estimation for mechanistic

models. The challenge is to balance accuracy and simplicity. In other words, use a

su�ciently complex model (with as many free parameters as necessary), but not more.

The approaches di�er slightly for mechanistic and empirical models.

Mechanistic Models: An initial popular strategy for model selection are hierarchical

likelihood ratio tests (hLRT) [35]. These carry out multiple pairwise X 2-tests between

a speci�c simple model H0 (null hypothesis) and a more complex model H1 (alternative

hypothesis). The basic assumption is that, with L(data|H0) beeing the likelihood under

22

3 Multi-Gene Model Selection

model H0, the test statistic δ:

δ = 2ln
L(data|H0)

L(data|H1)
= 2(lnL(data|H0)− lnL(data|H1))

is X 2 distributed if H0 is true (with the degree of freedom k equal to the di�erence of

free parameters between H1 and H0). If the probability of observing δ's value of is small

(usually ≤ 5%) under the X 2
k distribution, H0 is rejected. That is, the inclusion of more

parameters in H1 signi�cantly increases the likelihood. Otherwise H0 is accepted.

In [56], Posada and Buckley argue that likelihood ratio tests are not the optimal

strategy, because they do not account for non-nested models. Instead, they advocate

the use of the Akaike Information Criterion (AIC, see [6])

AIC = −2lnL(data|Hi) + 2Ki

or the Bayesian Information Criterion (BIC, see [69])

BIC = −2lnL(data|Hi) +Ki · log(n)

where Ki is the number of free parameters in the ith model (Hi) that yields log likelihood

lnL(data|Hi) and n is the sample size1. BIC and AIC allow for simultaneous comparison

of nested and non-nested models. Both information criteria, as well as hLRT, are im-

plemented for DNA alignments in ModelTest [57]. ModelTest calculates the likelihood

score for all models and possible options (+I or +Γ) on a �xed tree. The tree is either

given by the user or created using the neighbor joining algorithm (see [28]). Afterwards,

models are ranked according to BIC or AIC.

In [65], Ripplinger and Sullivan investigated the e�ects of model selection on ML

tree inference for DNA data. They conducted analyses for 250 phylogenetic datasets

and found that AIC typically selects more complex models than BIC or hLRT. More-

over, rate heterogeneity (+Γ option) was included in almost all selected models. The

largest variation in the number of free parameters was due to di�erent choices for the

instantaneous rate matrix Q.

Empirical Models: For models with �xed substitution rates there do not exist free

parameters in Q. Therefore, biologists often carry out an empirical model choice. That

is, a model that was estimated on similar data is assumed to suit the data at hand best.

1It is not clear what the sample size of a sequence alignment is. In ProtTest [2, 18] by default, the
total number of characters of the alignment is used as sample size.

23

3 Multi-Gene Model Selection

For example, to infer a viral phylogeny one would use the HIVb, HIVw, or FLU models,

as all were estimated on viral alignments. However, this approach does not rely on any

objective criterion. Moreover, there remain three common virus models plus the options

(+I, +Γ, and +F).

Usually, selection of empirical models is done analogously to mechanistic model se-

lection. Abascal et al. extended ModelTest to protein models in the ProtTest program

([2]). The major di�erence is that hLRT are not implemented, since only few of the

empirical protein models are nested.

RtRev (21%)

VT (2%)

WAG (46%)

Blosum (6%) CpRev (8%)
Dayho� (3%)

JTT (13%)

MtMam (1%)

MtRev (<1%)

(a) bacteria dataset

VT (2%)

WAG (19%)

Blosum (13%)

Dayho� (4%)

JTT (57%)

RtRev (4%)

(b) eukaryotes dataset

RtRev (33%)VT (4%)

WAG (29%)

Blosum (14%)

Dayho� (19%)

JTT (<1%)

(c) archaea dataset

Figure 3.1: A break-down of estimated best-�t protein models for multi-gene real world
datasets of the three domains of life. None of the available models is univer-
sally preferred for all alignments. Source: [39]

The same strategy was followed by Keane et al. in Modelgenerator (http://bioinf.

nuim.ie/modelgenerator/) to obtain the results presented in [39]. Keane et al. con-

ducted experiments on real world data-sets of the three domains of life. They found that

for multi-gene phylogenetic inferences, there does not exist a model that universally �ts

for all alignments. The results are summarized in Figure 3.1. For bacteria, WAG was

supported 46% of the time, whereas for eukaryotes, JTT was recommended most of the

time (57%). For archaea, WAG and rtRev were supported in almost equal proportions

(29% and 33% respectively).

24

http://bioinf.nuim.ie/modelgenerator/
http://bioinf.nuim.ie/modelgenerator/

3 Multi-Gene Model Selection

Keane et al. concatenated alignments for di�erent genes and computed the BIC and

AIC as if it were one single gene. Pupko et al. proposed two additional methods to com-

bine multiple genes in a single analysis in [59], the separate model and the proportional

model. Figure 3.2 depicts the three concepts. They di�er in the way branches of distinct

genes are treated. The concatenated concept assumes the same branching history for all

genes. The proportional model allows for di�erent branch lengths, but assumes linkage

in terms of a branch length ratio. Branch lengths can be completely di�erent among

genes in the separate model. Pupko et al. concisely describe the biological motivation

by distinguishing the factors in�uencing the rates for each branch. Accordingly, for the

separate branch concept, substitution rates are in�uenced by gene-driven factors as well

as lineage-driven factors. The proportional model assumes the same in�uence from the

lineage, while genes may evolve di�erently fast. For the concatenated concept, both

factors contribute equally in every partition. According to Stamatakis et al. (see [73]),

the concatenated and separate methods are also called joint and per-partition branch

length optimization, respectively.

partition 1

concatenated

proportional

partition n...

separate

Figure 3.2: Methods to treat branch lengths for multi-gene phylogenies, as proposed by
Pupko et al..

Tanabe implemented the concatenated, proportional, and separate branching models

in a multi-gene protein model selection application called Aminosan [76]. Aminosan

also computes the AIC and BIC for concatenated, proportional, and separate branches.

Whereas Aminosan is able to determine mixed model assignments for per-partition

branch lengths, for joint-branches one common model is chosen for all partitions.

One model can be appropriate for homogeneous partitions (genes with similar sub-

stitution rates). However, this assumption may oversimplify the challenge for hetero-

geneous partitions. Recently Li and Rodrigo [45] assessed the covariation of branch

25

3 Multi-Gene Model Selection

lengths and physically interacting genes. They found that the branches among genes

correlate in these cases. That is, it is reasonable to assume linked branches between

genes. Since Li and Rodrigo's �ndings also hold for only functionally related (physically

non-interacting) genes, in practice, it might be important to assign di�erent models for

joint-branch ML inference.

3.2 Protein Model Assignment

In this thesis we focus on �nding an adequate assignment of empirical protein models

to multi-gene data, for ML tree inference with joint branches. That is, partitions are

�linked via time�, while the substitution rates may be di�erent for each partition. We

call this task protein model assignment (PMA). So far this issue has not been addressed.

In analogy to the supermatrix approach (Section 2.1), the biological meaning of PMA

is that genes are assumed to evolve independently, whereas organisms have one single

phylogeny. That is, we allow for gene-speci�c substitution rates while assuming a com-

mon branching history of genomes. The motivation is that genes do not have to evolve

homogeneously (e.g., because some genes are more likely to become disadvantageous

and thus thrown away by natural selection, than others).

Here we focus on the empirical protein evolution models listed in Table 2.3. As

mentioned in Section 3.1, the most variation in the number of free parameters occurs

in the rate matrix. For empirical protein models, the rate matrix does not include any

free parameters. Furthermore, we compare model variations with the same options only,

hence the number of free parameters is constant for all candidate models. Therefore,

using AIC or BIC is pointless. Consequently, we compare di�erent model assignments

based on their log likelihood scores.

One can imagine the setup of PMA similar to cracking a combination lock. The num-

ber of partitions corresponds to the key size n. The set of candidate models corresponds

to the code's alphabet, with m being the alphabet size. By rotating the discs of the lock

one tries to �gure out the key, whereas we optimize the likelihood score. As the key's

length increases, so does the complexity of a brute-force attack. Similar to the combi-

nation lock, for the protein model assignment there are mn assignments (combinations

of m models to n partitions). The di�erences are that:

1. We cannot recognize the optimal solution without exhaustive search, whereas the

key is optimal as soon as the lock opens.

2. We can apply decreases and increases of likelihood scores to determine the next

26

3 Multi-Gene Model Selection

assignment to test (i.e., to guide the search), whereas for the lock all non-optimal

solutions have the same score.

Assume a partitioned protein data set as outlined in Figure 3.3. Ideally, the task of

adequately assigning models to partitions is to select that model for each partition such

that the likelihood of the phylogenetic tree is maximized. That is, for all possible tree

topologies, branch lengths and model assignments, return the con�guration maximizing

the likelihood. For unrooted binary trees there are,
∏t

i=3(2i − 5) possible topologies

(with t the number of taxa). An ideal approach would be to test each of the mn model

combinations for every topology. Moreover, a joint optimization of the 2t−3 branches is

necessary for each tree. Unfortunately, this ideal scenario is computationally infeasible.

partitions

taxa

concatenated

Dayhoff

Dayhoff

Dayhoff

...

Dayhoff

Dayhoff

Dayhoff

...

Dayhoff

WAG

LG

...

...

...

...

Figure 3.3: Concept and annotation of partitioned data. Tree topology is assumed to
be �xed during model selection.

To reduce the complexity of the problem, a reasonable (i.e., non-random) �xed tree

topology is assumed. Here we use a Maximum Parsimony tree for model assignment

optimization. Of course, this can be a disadvantage. However, Posada and Crandall

found [58] that for DNA evolution models, the tree topology does not in�uence model

selection substantially, as long as it is reasonable. Therefore, using a parsimony tree for

model assignment is an acceptable solution. We assume, that a �good� model assignment

can be found on a �xed, reasonable tree. After all, models are simpli�cations of reality,

only.

Note that models cannot be optimized independently on a per partition basis. This is

due to the interdependent branch lengths. Optimal joint branch lengths may be di�erent

for each model assignment. Accordingly, a change of model m1 partition 1 can decrease

27

3 Multi-Gene Model Selection

the likelihood in the sense that the previously optimal models m2...n for partitions 2 . . . n

are not optimal any more.

In summary, we are maximizing the log likelihood lnL of the data for a �xed tree T

with per-partition varying models D and jointly optimized branches e:

max(lnL(data|T, e,D))

Although we use a �xed tree topology, an exhaustive search for the best model as-

signment is still not feasible. The reason is the exponential large number of model

combinations.

Chapter Summary

This chapter outlined the task of model selection. For mechanistic models, the number

of free parameters in the substitution rate matrix varies greatly. Therefore many of

these models are nested. Typically, hierarchical likelihood ration tests (hLRT) and the

bayessian (BIC) or akaike (AIC) information criterion are applied to select an appropri-

ate model. The goal is to balance the number of free parameters. Empirical models are

mostly not nested. Therefore, usually only information criteria can be used for choosing

empirical models.

Evolutionary properties may vary among di�erent genes of the same organism. There-

fore, in multi-gene DNA analyses model parameters are usually estimated on a per-gene

basis. That is, substitution rates are allowed to be di�erent for each partition. Opti-

mal partitioned models are easy to determine for multi-gene analyses with per-partition

branch lengths. However, it is di�cult to assign models for protein analyses with joint

branch length estimates. We call this the protein model assignment problem.

28

4 Algorithmic Approaches

Chapter 3 introduced the PMA problem. Because of the large number of potential

assignments an exhaustive search is impractical for solving this task. Here we propose

several heuristics for PMA. In particular, we present the adaptation of two well-known

meta-search heuristics�Simulated Annealing and Genetic Algorithms.

Initially, we present a formal de�nition of the PMA problem and an overview of the

search heuristics we have developed (Section 4.1). Thereafter, the algorithms for solving

PMA are discussed in detail in Section 4.2.

4.1 Objectives and Overview

The protein model assignment problem is a �classic� combinatorial optimization problem.

In analogy to the work of Blum and Roli [9], which o�ers a comprehensive overview of

many search algorithms, we de�ne the PMA problem P = (S, l) as follows. Let

� X = {1, . . . , n} be a set of partitions

� D be the model domain (the set of models d)

� l : D × · · · ×D︸ ︷︷ ︸
n-times

→ R be the likelihood function that maps any model assignment

to its corresponding likelihood score (l(data|T, e,D))

The set of all candidate solutions (also assignments, or con�gurations) for the PMA

problem is:

S = {s = {(1, d), . . . , (n, d)}|d ∈ D}

That is, s assigns a model d ∈ D to each partition i. Usually S is called the search space.

The search space increases exponentially with the number of partitions n (|S| = |D|n),
where |D| is the number of substitution models. The likelihood function l is the objective
to be maximized. As already mentioned, the tree topology T is assumed to be �xed

for the purpose of model assignment. Moreover, the data is �xed as well. Branches e

must be optimized for every assignment, though. However, for each assignment, the

29

4 Algorithmic Approaches

branch lengths are optimized using the same numerical optimization method (i.e., the

Newton-Raphson method). Therefore, we de�ne l(s) to be the log likelihood score of

assignment s with respect to T and optimized branch lengths e, given the observed data.

That is:

l(s) = Ldata,T,e(s)

In PMA we are striving to �nd an assignment s? ∈ S, which achieves a higher likeli-

hood score than all other assignments s ∈ S:

l(s?) > l(s)∀s ∈ S \ s?

⇔ l(s?) = max(l(s))

We call s? a globally optimal solution.

PMA is similar to many problems that are known to be NP-hard. At present it

seems that PMA may be NP-hard as well. Thus, we suspect that there does not exist a

deterministic algorithm that is guaranteed to �nd an exact solution in polynomial time,

unless P=NP.

Here we focus on applying heuristic strategies to �nd su�ciently good assignments.

Based on the basic properties of the algorithms we distinguish between constructive

and improvement heuristics. Constructive algorithms generate an enhanced assignment

from scratch, whereas improvement strategies aim at improving upon an initial solution

of inferior quality.

Constructive Heuristics start with an initially empty solution. They successively add

partition models to this initial assignment until a complete model assignment is con-

structed. The last step of these approaches includes the evaluation of the log likelihood

of complete assignments under a joint-branch length estimate.

The PMA algorithms of this group deterministically compute a solution. That is, they

always converge to the same result. Deterministic constructive heuristics are usually

faster than improvement heuristics. They often return solutions of inferior quality,

though.

Improvement Heuristics evaluate a set of initial, (mostly sub-optimal) random as-

signments. Starting from the initial assignments they successively apply changes to

obtain better con�gurations. In contrast to the deterministic strategies, improvement

heuristics evaluate all intermediate assignments (assignments in-between start and end

30

4 Algorithmic Approaches

of the algorithm) completely and exactly.

Usually, improvement heuristics use some sort of randomness to more thoroughly

explore the search space. Hence, they can converge to di�erent assignments each time

they are run. Moreover, if given in�nite time, some improvement heuristics �nd the

exact solution. These heuristics are often also called meta search heuristic.

4.2 PMA Heuristics

There exist multiple heuristic strategies for combinatorial optimization problems, which

can be easily adapted to PMA. It is unclear which method is most appropriate. In this

work fe focus on evaluating the most frequently used heuristic strategies. We assess two

constructive and three improvement algorithms.

Initially, we present the constructive strategies�a naïve strategy based on per-

partition likelihood scores in Section 4.2.1, and a greedy approach in Section 4.2.2.

Thereafter, we discuss the more generic improvement heuristics for the PMA problem�

a Hill-Climbing approach in Section 4.2.3, Simulated Annealing in Section 4.2.4, and a

Genetic Algorithm in Section 4.2.5.

4.2.1 Naïve Heuristics

Changing the model of one partition in�uences the remaining partitions (via the joint

branch lengths). Thus, the log likelihood score must be re-computed and branch lengths

re-optimized for the entire dataset. Therefore, evaluating the score of a single model

assignment is quite expensive. When branch lengths are optimized independently for

every partition, the model assignment for one partition is independent from the remain-

ing partitions. In this case we can construct the optimal assignment by just computing

the optimal model for each partition in�vidually. Therefore, every model needs to be

evaluated only once for each partition. The result is a model assignment s (however,

with branches optimized per-partition). We call the best-scoring assignment under per-

partition branches the naïve optimum. Accordingly, the per-partition model assignment

optimization is referred to as the naïve heuristics.

To retrieve the naïve optimum, we compute a table r of size |n|×|D| (see Algorithm 1).

The columns i ∈ {1, . . . , n} contain the likelihood score for partition i using model d ∈ D
in row d. Thereafter, the best naïve assignment snaive can be constructed by extracting

31

4 Algorithmic Approaches

and concatenating the optimal models on a per-partition basis. That is:

snaive = {(i, d|max({ri,d}))∀i ∈ {1, . . . , n}}

Algorithm 1 Naïve Heuristics
1: naive← table(n, |D|) . Initialize table of size n× |D|
2: for i ∈ {1, . . . , n} do . Iterate over partitions
3: for d ∈ D do . Iterate over models
4: rij ← l({(i, d)}) . Compute and save likelihood score
5: end for

6: end for

The execution time of Algorithm 1 largely depends on the time needed for likelihood

computations (line 4). Usually, computing the likelihood becomes faster as the alignment

size decreases (w.r.t. the number of species and sites included). However, the likelihood

computation includes numerical approximation operations to optimize branch lengths

and the α-parameter of the Γ distribution of rate heterogeneity. As, these operations

in�uence the computation of the likelihood, execution time may be di�erent for distinct

models. For the sake of simplicity, we ignore these factors here. The number of species

is constant throughout the naïve heuristics, as are partition lengths. Therefore, we

approximate the worst-case execution time for any likelihood computation by tmax. An

upper bound for the execution time of Algorithm 1 (tnaive) can then be given by:

tnaive ∈ O(|X| · |D| · tmax)

The naïve optimum, can be retrieved afterwards by determining the maximum for each

of the n columns of table r. Because usually r is comparatively small the naïve optimum

can be obtained quickly.

Note that the naïve optimum does not need to be the optimum for PMA. To assess

the di�erence between naïvely assigned models and optimal PMA, we calculated both

for small alignments (see Section 6.3). For this purpose, we randomly extracted subsets

from real data and computed the PMA solution exhaustively to compare it to the naïve

optimum. On average the resulting model assignments di�ered in about 50% of the

cases.

32

4 Algorithmic Approaches

4.2.2 Greedy Assignment Composition

Usually, for large search-spaces it is tempting to assess greedy heuristics �rst. Algorithms

are called greedy if they intend to �nd the solution of a problem by applying local

improvements. The most common example for greedy algorithms is based on the change-

making problem. Before introducing the greedy strategy for PMA we will brie�y outline

the change-making problem to illustrate the basic idea of such approaches.

Consider a waitress, that has to give change frequently. She wants to be e�cient and

always return as few coins as possible. The question is how to determine which coins

she should return (i.e., the smallest number of coins to yield the change). The greedy

method to select the coins consists of always choosing the coin with the highest value

equal or smaller to the remaining change. For example, in the US for an amount of 48¢,

return 25¢ + 10¢ + 10¢ + 1¢ + 1¢ + 1¢. Luckily, in the US and many other countries the

greedy algorithm yields the optimal solution (see [70]). However, the algorithm would

not necessarily �nd the optimal solution, if some currency had coins of 1, 3, and 4. For

example, assume a change of 6. For this problem instance, the greedy approach would

return 4 + 1 + 1, whereas the optimal solution obviously is 3 + 3. This is a problem of

greedy approaches, they do �nd a solution, but frequently that solution is sub-optimal.

Algorithm 2 Greedy Assignment Composition
1: s← ∅ . Initialize an empty assignment
2: for i ∈ {1, . . . , n} do . Iterate over partitions
3: P ← ∅
4: LH ← −∞
5: for d ∈ D do . Iterate over models
6: if l(s ∪ (i, d)) ≥ LH then . Test model d for partition i
7: P ← (i, d)
8: LH ← l(s ∪ (i, d))
9: end if

10: end for

11: s← s ∪ P . Add optimal model for this partition to the solution
12: end for

13: return s . s contains the solution

Our greedy approach to PMA constructs a solution on a per-partition basis. Algo-

rithm 2 formally describes this greedy strategy. Initially an empty solution s is gener-

ated. Thereafter, the optimal model assignment of the current partition i is computed

(given the formerly optimized partitions (j, d) ∈ s, with j < i). That is, we start with an

empty solution and iterate until the solution contains a complete assignment. Usually,

longer partitions have a greater contribution to the likelihood score. Therefore, it can

33

4 Algorithmic Approaches

be bene�cial to initially sort X in descending order according to the partition lengths.

As for the naïve heuristics, the execution time of Algorithm 2 depends on the likelihood

computations (line 6). Note that we cache the likelihood of line 6 to reuse it in line 8.

For Algorithm 2 (in contrast to the naïve heuristics), the alignment length increases via

the concatenation of distinct partitions (through the outer for-loop starting in line 2).

Hence, we expect the execution time for the computation of likelihood scores to increase

with each iteration of the outer loop. Consequently, we de�ne tj to be the execution

time for the likelihood computation of an alignment containing partitions 1 to j, where

tj < ti ⇔ j < i. Finally, we can approximate an upper bound for the execution time of

Algorithm 2 (tgreedy) as follows:

tgreedy ∈ O(|D| ·
n∑
i=1

ti) = O(|D| · n(n+ 1)

2
· tn)

⇔ tgreedy ∈ O(|D| · n2 · tn)

With n the number of partitions and |D| the number of candidate models. However, the
execution time for Algorithm 2 also depends on the distribution of the partition lengths.

If partition lengths are constant, we may expect ti to increase linearly with a constant

c ∈ R, (i.e., ti = c · t1 · i). For this case, we can narrow down the upper bound for the

execution time of Algorithm 2 to:

tgreedy ∈ O(|D| · c · t1 ·
n(n+ 1)

2
)

⇔ tgreedy ∈ O(|D| · c · t1 · n2)

Analogously, if partitions at the beginning of the alignment are longer than those at the

end, the algorithm is slower.

4.2.3 Hill-Climbing

Usually, Hill-Climbing starts with a random initial assignment (the current best solu-

tion). Thereafter, the algorithm repeatedly evaluates assignments in the neighborhood

of the currently best assignment. For now, we de�ne the neighborhood of an assignment

s by:

N(s) = {s′ ∈ S|di = d′i ∧ dj 6= d′j∀j ∈ {1, . . . , n}, i ∈ {1, . . . , n} \ j}

with di representing the model of partition i. That is, the neighborhood is the set of

assignments that di�er in only one model dj. Note that the neighborhood is symmetric,

34

4 Algorithmic Approaches

that is, s′ ∈ N(s)⇔ s ∈ N(s′).

If a better assignment can be found in the neighborhood, the procedure moves to the

better assignment, that is, �climbs up-hill�. In other words, the neighboring con�guration

is taken as new, currently best, assignment. Hill-Climbing implementations vary in the

way they evaluate the neighborhood of an assignment. They can either move to better

solutions immediately (next ascent Hill-Climbing), or evaluate the entire neighborhood

and move to the best neighbor (steepest ascent Hill-Climbing).

Hill-Climbing evaluates neighborhoods until it converges to a peak. That is, it con-

verges if there is no better neighboring assignment for the currently best assignment.

Such an assignment ŝ, with l(ŝ) ≥ l(s)∀s ∈ N(ŝ), is called locally optimal with respect

to neighborhood N .

The Hill-Climbing approach to PMA is formally described by Algorithm 3. Initially,

a random assignment is generated (line 1). For the currently best assignment, all neigh-

boring assignments are generated and evaluated (line 5). When a better assignment is

found, it is accepted (lines 6+7). Afterwards the neighborhood of the better assignment

is searched. The procedure converges as soon as a local optimum is found (lines 11+12).

In other words, Hill-Climbing is guaranteed to �nd a local optimum.

Algorithm 3 PMA by Hill-Climbing
1: s← random ∈ S, lmax ← l(s) . Initialize random starting solution
2: while true do
3: for x′i ∈ X do . Iterate over partitions
4: for v′i ∈ D do . Iterate over model
5: s′ ← {(xj, vj) ∈ s|j ∈ {0, . . . , n} \ i} ∪ (x′i, v

′
i)

6: if l(s′) > l(s) then . Evaluate neighbor model
7: s← s′ . Accept neighbor
8: end if

9: end for

10: end for

11: if lmax > l(s) then . Found no better neighbor
12: return s . s must be a local optimum
13: end if

14: lmax ← l(s) . Move to best neighbor
15: end while

For some problem instances, there may not exist multiple local optima (Figure 4.1(a)),

hence a local optimum is also the global optimum. In contrast, Figure 4.1(b) illustrates

a search-space with two local optima. When using a Hill-Climbing algorithm, only

the lower peak may be encountered. This is the major disadvantage of Hill-Climbing.

Figure 4.2 depicts a search-landscape with multiple local optima (black points). Which

35

4 Algorithmic Approaches

(a) One local optimum (b) Two local optima

Figure 4.1: Search-landscape illustration for a hypothetic two-dimensional maximization
problem ((a) has one local optimum, whereas (b) shows an objective function
with two local optima).

peak will be found depends on the position of the initial assignment. Assume that point

b is the global optimum. If one starts with a solution close to point a (in the surrounding

borders of a) the Hill-Climbing method will not converge to the global optimum. An

initial solution within the borders of b, however, would return b.

a

b

c

Figure 4.2: Plan view of a hypothetic search-landscape with multiple local optima
(points a to g). b is the global optimum. Local search will not �nd b,
if the search is initialized with con�guration near to an other local optimum.
Adapted from http: // en. wikipedia. org/ wiki/ Local_ optimum , 4/16/2012

The number of local optima depends on the de�nition and size of the neighborhood of

an assignment. Therefore, also the probability of �nding an only locally optimal assign-

ment depends on the neighborhood. Because we do not know better, we suspect that

the PMA search-space contains multiple local optima, unless we de�ne all assignments

to be neighbors. Hence, Hill-Climbing will probably converge to a local optimum. Note,

however, that the neighborhood-size must be chosen carefully. That is, there exists a

trade-o� between speed and accuracy. If the neighborhood is too large, the algorithm

becomes ine�cient. If the neighborhood is too small, the algorithm can easily and

36

http://en.wikipedia.org/wiki/Local_optimum

4 Algorithmic Approaches

frequently get stuck in a local optimum.

Our neighborhood de�nition from above assumes that any model may be the optimal

choice for any partition. That is, to get a neighbor any partition may be assigned

another random model (we do not prefer a model or partition a priori). Consequently,

there are (|D| − 1) · n neighbors. Given that we do not want to bias our choice toward

some models or partitions, there does not exist a smaller neighborhood.

To decrease the probability of �nding only locally optimal assignments, Hill-climbing

can be rerun with di�erent initial solutions. Furthermore, the neighborhood may be

successively increased in every run. This approach is also known as variable neighborhood

search. For this purpose, we specify Nk(s), with a constant k ≥ 1 that determines the

neighborhood of assignment s in run k. As we do not want to specify the set of partitions

that vary nor the models, the neighborhood can only be increased by assigning di�erent

models to more partitions. In other words, for k = 1 one model may be di�erent, for

k = 2 two models can be changed, and so on. Therefore, as k increases the neighborhood

size increases, as well. The size of Nk can be given as follows:

|Nk| =
(
n

k

)
︸︷︷︸

partition subsets

· (|D| − 1)k︸ ︷︷ ︸
model combinations

For a small data-set consisting of four partitions, a variable neighborhood search with

1 ≤ k ≤ 3 would at least evaluate 21,454 (N1 + N2 + N3 = 4 · 17 + 6 · 172 + 4 · 173)

neighbors (out of 104,976 possible assignments, or approx. 20% of the search-space).

However, we consider the evaluation of only one neighborhood here (remember that if

better neighbors are found the search continues with either the best neighbor or the �rst

better neighbor). That is, for small alignments the variable neighborhood search may

degenerate to an almost exhaustive search. For large alignments, this danger decreases.

However, this is mainly due to the rapid increase of the search space (e.g., for n = 50

and 1 ≤ k ≤ 3 the minimal number of neighbors to evaluate represents much less than

1% of the search-space). Because of the large number of likelihood evaluations we did

not exploit the variable neighborhood search for PMA.

4.2.4 Simulated Annealing

The Simulated Annealing (SA) technique is inspired by the annealing process in thermo-

dynamics. Its thermodynamic purpose is to increase the stability of metals. During this

process, the metal is initially heated and cooled slowly afterwards to reach a low-energy

37

4 Algorithmic Approaches

state. The lower the energy, the more stable the metal. The approach was indepen-

dently proposed by Kirkpatrick et al. in [42] and �ern�y in [14]. Both papers apply the

method to the well-known NP-hard traveling salesman problem.

Compared to Hill-Climbing, the advantage is that, SA always accepts better states,

but also allows for moves that generate assignments of worse quality. Worse moves are

often called backward steps (for maximization problems also downhill steps). Accepting

worse moves allows the search to move out of local optima and thereby more thoroughly

explore the search-space. Usually, the probability of backward steps decreases during

the SA search. Because SA can escape from local optima it is frequently applied to NP-

hard optimization problems. Moreover, it can be easily adapted to the speci�c problem

at hand.

time

s
c
o
r
e

Figure 4.3: Concept of Simulated Annealing. Adapted from http: // www. iasor.

tu-clausthal. de/ Arbeitsgruppen/ Stochastische-Optimierung/ forschung/ sa ,

4/16/2012

Often, optimization problems are formulated as minimization problems. The PMA

problem is a maximization problem. This can easily be formulated as minimization

problem by multiplying log likelihood scores by −1. We outline the basic SA procedure

for minimization problems, because this allows for constructing an intuitive example.

Assume we want to minimize the objective function depicted in Figure 4.3. Let the

leftmost ball be an initial random solution. In SA, the ball will always roll down during

the search. If the ball is fast (high temperature), it will probably also be able to traverse

a small hill (slightly worse solution). For example, the �rst hill in Figure 4.3 is traversed

(the red moves). However, as the ball becomes slower (as the temperature decreases)

it becomes more unlikely to climb another hill (accept backward steps). Also, it is less

likely, that a large hill will be traversed (a considerably worse solution is accepted). For

example, in Figure 4.3 there is not enough speed left to climb the second hill. The green

ball depicts the �nal solution returned by the algorithm.

An adaption of SA to the PMA problem applies this principle to maximize the likeli-

38

http://www.iasor.tu-clausthal.de/Arbeitsgruppen/Stochastische-Optimierung/forschung/sa
http://www.iasor.tu-clausthal.de/Arbeitsgruppen/Stochastische-Optimierung/forschung/sa

4 Algorithmic Approaches

hood. Again, we start with a random assignment s and its likelihood score l(s) (lines 1

to 2 of Algorithm 4). Line 3 initializes the counter k that determines the temperature.

Thereafter (lines 5 to 14), the algorithm successively evaluates the neighbors s′ ∈ N(s)

of s (thus, as for Hill-Climbing, the neighborhood should be chosen with care). If a

neighbor s′ with l(s′) > l(s) is found, s′ is accepted immediately (lines 6 to 8). That is,

the remainder of the neighborhood will not be evaluated. If l(s′) ≤ l(s), the algorithm

moves to s′ with a certain acceptance probability p(s, s′, T) ∈ [0; 1]. The acceptance

probability is a function of the temperature T and the likelihood scores of s and s′. T

decreases monotonically during the search process, and so does the acceptance proba-

bility. That is, in the beginning, the procedure is more likely to accept a worse move

than in the end. Furthermore, every point in time a small score decrease is accepted

with higher probability than a larger one. Usually, the acceptance probability is de�ned

as p(s, s′, T) = e−
l(s)−l(s′)

T , also known as Metropolis criterion (see [1]).

Algorithm 4 Simulated Annealing Algorithm for PMA
1: s← random ∈ S . Initialization
2: smax ← s, lmax ← l(s)
3: k ← 0
4: repeat

5: s′ ← next ∈ N(s) . Get next neighbor

6: if random ∈ [0; 1] < e−
l(s′)−l(s)

T then

7: s← s′ . Move to worse neighbor
8: end if

9: if l(s) ≥ lmax then . If new maximum
10: smax ← s . replace old maximum
11: lmax ← l(s)
12: end if

13: k ← k + 1 . Prepare next temperature
14: until Tk > 0 . As long as not cold
15: return smax . smax contains best solution

For each iteration k of the loop (lines 4 to 14), the temperature Tk it is given by an

annealing schedule. The schedule consists of a starting temperature T0 and a function

τ : k → N. There exists a large variety of distinct de�nitions for τ . Even a non-

monotonically decreasing τ may be applied. Usually, the following cooling strategy is

used:

τ : Tk = bT0βkc

with β ∈ [0; 1]. We evaluate di�erent choices for T0 and β in Section 6.3.2. SA converges

when the system is totally cool (Tk = 0).

39

4 Algorithmic Approaches

4.2.5 Genetic Algorithm

Genetic Algorithms (GAs) can also escape from local optima. A GA mimics the process

of evolution. The terminology used in this context is derived from biology. We refer

to individuals (assignments) and their �tness (likelihood), as well as selection and re-

production (moves). GAs regard solutions as genetic properties of individuals. A set of

individuals is called a population. The motivation is that the individuals of a population

include bene�cial and disadvantageous �genetic� properties. Mating of individuals is

thought to yield �tter (better adapted) individuals. Therefore, an improved assignment

is created by evolving previous assignments. There exists a large variety of di�erent

implementations of GAs. Here we discuss our adaption of GAs to the PMA problem. In

[33], Haupt et al. o�er a detailed and comprehensive overview of implementation options

for GAs.

Typically, GAs start with a random population of individuals (the current population).

Thereafter, some individuals of the population are chosen to produce new individuals

to replace the current population. We call the population gt ⊂ S of a given iteration

t ∈ N of the search, the tth generation. Frequently, all generations have the same size

Npop, the population size. Except of g1 (the initial population), new generations gt+1

are created from individuals of the current generation gt. Accordingly, gt+1 is called the

o�spring of gt.

The �tter s ∈ gt, the higher its chance to reproduce. However, similar to nature,

every individual should have the chance to reproduce, in order to explore the search-

space more thoroughly. Moreover, to increase diversity, mutations can be applied during

the reproduction phase.

There does not exist a strict, commonly accepted de�nition for GAs. Usually the

following three components are present:

1. A selection strategy is applied to choose the parents of generation gt. Here, we

apply a tournament for parent selection. That is, for each parent we select two

candidate assignments from the current population at random. The �tter candi-

date is chosen as the �rst parent s1. To select the second parent s2, the tournament

is repeated. We refer to parent selection by select(gt), which returns exactly one

parent.

2. A (re)combination procedure that exchanges parts of s1 and s2 to generate two new

individuals sc1 and sc2. That is, both children sc1,2 consist of �genetic material� of

the two parents. For this purpose, usually, the chromosomal crossover of evolution

is emulated. We apply a single point crossover strategy. That is, s1 and s2 are

40

4 Algorithmic Approaches

split at the same random position i ∈ {1, . . . , n − 1}, with n being the number

of partitions. Afterwards, the �rst part of s1 is combined with the second part of

s2 into sc1. For sc2 the second part of s1 and the �rst part of s2 are combined.

Formally, that is:

sc1 = {{(i, di) ∈ s1} ∪ {(i+ 1, di+1) ∈ s2}}

sc2 = {{(i, di) ∈ s2} ∪ {(i+ 1, di+1) ∈ s1}}

Figure 4.4 illustrates the single point crossover. We refer to single point crossover

by crossover(s1, s2), which returns the children sc1 and sc2.

3. A mutation strategy, to increase diversity of populations. Usually each gene of an

assignment s of the o�spring generation is changed with a small probability�the

mutation probability. We mutate every partitions assignment into another random

model with probability Pm. This operation is denoted as mutate(s), which returns

the mutated assignment s′.

Increasing diversity by mutation is especially important because all individuals

of the initial population could coincidentally share one or more properties (same

model for a partition for all assignments). Applying the crossover technique these

properties would never change.

parent 1 parent 2

split

recombination

child 1 child 2

Figure 4.4: Schema of the single point crossover procedure.

Until now we did not discuss convergence of the GA approach. Obviously, the algo-

rithm could simply converge after a prede�ned number of populations has been evalu-

ated. We want the search to converge, if it does not noticeably improve the search-result.

Therefore, the algorithm terminates as soon as an o�spring did not contain a better in-

dividual.

41

4 Algorithmic Approaches

Algorithm 5 Genetic Algorithm for PMA
1: t← 0, g(t)← {random ∈ S} . Initialization
2: s? ← ∅
3: while true do
4: s? ← fittest(gt) . Determine best the currently best solution
5: for 1, . . . , Npop do . Create o�spring
6: s1, s2 ← select(gt) . Select parents s1 and s2
7: schild ← crossover(s1, s2) . Recombination of parents
8: schild ← mutate(schild) . Occasional mutation
9: gt+1 ← gt+1 ∪ schild

10: end for

11: if l(s?) > l(fittest(gt+1)) then
12: return s? . No further enhancement
13: end if

14: t← t+ 1
15: end while

Algorithm 5 outlines the GA procedure for PMA. It starts by initializing a random

set of assignments for the current generation g1 in line 1. For simplicity, we de�ne the

procedure fittest(gt), which returns the best assignment of generation gt. In line 3

we determine the currently best solution. Thereafter, Npop individuals are selected

according to the operations in lines 4 to 9. If a better assignment was found in the current

population the search continues, otherwise the currently best assignment is returned in

line 12.

Chapter Summary

In this chapter we formally introduced the protein model assignment (PMA) problem.

The PMA problem is a classic combinatorial optimization problem. The goal is to

maximize the log likelihood score of a �xed reasonable tree (i.e., a parsimony tree)

for given data, by varying partitions model assignments. That is, given the data and

the tree, we want to �nd a model for each partition, so that the overall likelihood is

maximized. As we want to jointly estimate the branch length any combination of models

d ∈ D to partitions i ∈ {1, . . . , n} may be optimal, hence, an exhaustive search does not

see feasible for many partitions.

Therefore, we developed di�erentiated heuristics that help to e�ciently search for

�good enough� model assignments. In particular we introduced two deterministic ap-

proaches (the naïve heuristics, and the greedy assignment composition) and presented

the adaption of three non-deterministic heuristics (Hill-Climbing, Simulated Annealing,

42

4 Algorithmic Approaches

and Genetic Algorithm) to PMA. Both deterministic strategies create a solution from an

initially empty assignment. Therefore, they are also referred to as constructive heuris-

tics. The non-deterministic approaches, in contrast, guess a random assignment, and

aim at improving upon its score by repeatedly applying small changes. Therefore, these

heuristics are frequently called improvement heuristics.

43

5 Improving Performance

Note that the improvement heuristics of Section 4.2 are generic algorithms and do not

employ problem-speci�c knowledge to solve the problem (they only compute likelihood

scores). Thus, such methods are often denoted as black-box searches. In [81], Wolpert

and Macready found that search algorithms preform according to the quality and amount

of domain-speci�c knowledge that is included. Here, we develop adaptations (often

also called hybrid heuristics) to reduce execution times or improve the accuracy of the

heuristics.

Section 5.1 outlines various combinations of heuristic approaches. Thereafter, we

describe techniques that strive to reduce the number of candidate models (Section 5.2).

In Section 5.3 we discuss approaches to speed up likelihood computations.

5.1 Seeding and Pipelining

Essentially, Hill-Climbing and SA di�er in the way by which they move to and accept new

solutions. Remember that, SA is able to accept worse solutions (downhill steps) with

some probability. However, the basic underlying principle is similar to Hill-Climbing.

Furthermore, SA can be considered to be a GA, with a population size of one. Because

the size of all generations is one, crossover operations are not considered. The mutation

operation can be de�ned to transfer assignments into a neighboring con�guration with

probability 1.0. However, usually the population size is much larger. Hence random

improvement heuristics are often subdivided into single-solution and multiple-solution

based heuristics. SA and Hill-Climbing are single-solution based, whereas GAs are

multiple-solution based. This is also the reason why SA and Hill-Climbing appear to be

more similar than SA and GA.

The major di�erence between improvement heuristics lies in the implementation of

intensi�cation and diversi�cation. That is, the exploration of high quality areas of the

search-space and the exploration of yet unvisited areas, respectively (see [9, 86]). Usually,

a balance between these two criteria can be achieved by adjusting heuristic parameters.

44

5 Improving Performance

For example, decreasing the temperature of SA, will favor intensi�cation. A similar

e�ect, although via a distinct mechanism, can be achieved by decreasing the population

size in GAs. Usually, GAs exhibit a higher proportion of diversi�cation, because they are

initialized with several random assignments. Hill-Climbing only deploys intensi�cation.

Besides parameter optimization combinations of the basic heuristics are frequently

exploited to improve performance. That is, the self-contained heuristics are executed in

sequence (one after the other). In other words, results of earlier algorithms are passed to

later algorithms. Thereby, bene�ts of each algorithm can be leveraged, while overcoming

its weaknesses. For example, the deterministic constructive heuristics of Section 4.2

have the bene�t of predictable (usually relatively short) execution times. Moreover,

they frequently �nd �good� (on average better than random) solutions. However, these

heuristics may return suboptimal results. On the other hand, Hill-Climbing seems to be

well-suited for improving upon a speci�c solution and thereby �nding a better assignment

in a small part of the search-space. However, because Hill-Climbing is initialized by

a random assignment, it may spend a lot of time on improving a low quality initial

con�guration to obtain a �good� assignment. A straight-forward enhancement is to

initialize Hill-Climbing with a �good� solution. In other words to seed the heuristic with

a good initial con�guration. Deterministic heuristics can be applied for this purpose.

That is, the result of greedy assignment composition or the naïve heuristics, serve as

initial solution to the Hill-Climbing algorithm. More generally, also SA and GA may be

seeded with results of these algorithms.

Furthermore, one could execute any subset of random heuristics one after the other in

a pipeline, always propagating the results to subsequent pipeline stages. For instance,

it is generally accepted that the strength of GAs is to e�ciently locate regions of good

quality [16]. Due to the comparatively high amount of diversi�cation operations, GAs

quickly leave these regions again without thoroughly exploring them. Therefore, it may

be promising to apply GAs to create seed populations of �good� quality and re�ne these

assignments by Hill-Climbing afterwards. However, such a pipeline may increases the

overall execution time dramatically. Therefore, we only exploit seeding in this thesis.

5.2 Search-Space Reduction by Model Clustering

As already mentioned in Section 3.1, biologists sometimes assign models to partitions

based on empirical criteria. The approach presented here is somewhat similar. By com-

puting similarities between models, we intend to reduce the number of candidate models,

that is, reduce the size of |D| in |D|n (the number of posible model assignments). For

45

5 Improving Performance

this purpose, the most similar models (models that specify similar substitution rates

and that are hence thought to be likely to yield similar results in terms of log likeli-

hood scores) are clustered. Thereafter, a representative average model is calculated for

each cluster. Instead of evaluating every individual model, these representative/cluster-

models serve as placeholders for an initial model assignment. That is, the cluster-models

are evaluated �rst. Then, we focus on evaluating the individual models in the corre-

sponding clusters for every partition. In other words, we then further re�ne the model

assignment. Therefore, this approach separates the PMA problem into two problems.

Firstly, we strive to solve a PMA instance with a di�erent (i.e., smaller) set of candidate

models. This task assigns a cluster of substitution models to each of the partitions.

Subsequently, we replace the set of candidate models D of the initial PMA instance

by n distinct sets Di ⊆ D, the sets of candidate models for partitions 1 to n (each Di

contains the models of the cluster that was assigned to partition i).

1

H
IV

b

H
IV

w

F
L
U

m
tA

R
T

m
tZ
o
a

m
tR

E
V

m
tM

A
M

rt
R
E
V

L
G

B
lo
su
m

P
M
B

W
A
G

V
T

cp
R
E
V

D
a
y
h
o
ff

D
a
y
h
o
ff
-d
cm

u
t

J
T
T

J
T
T
-d
cm

u
t

0
2
0

4
0

6
0

8
0

1
0
0

Clus ter Dendrogram (4 clus ters)

H
e
ig
h
t

4 2 3

(a) Clusters

5

6

7

18

10

16

17

15

1

13

12

14

11

2

8

9

4

3

Silhouette width s i

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot (4 clusters)

Average silhouette width : 0.26

n =18

Per-cluster

average

1: 0.23

2: 0.34

3: 0.30

4: 0.10

(b) Silhouette

Figure 5.1: Hierarchical clustering based on the element-wise euclidean distance of mu-
tation rates. Figure 5.1(a) depicts the cluster dendrogram. Figure 5.1(b)
depicts the corresponding silhouette plot for four clusters.

To compare the relative rates of di�erent substitution matrices, matrix-entries need

to be scaled. We do this by dividing each matrix-element by the maximum rate of the

matrix (qij
max{(Q)} , with i, j ∈ {1 . . . 20}). Afterwards, the entries of the scaled matrices

are used to calculate the euclidean distances for each pair of matrices. That is, for

two matrices {aij} and {bij} the distance is
√∑20

i=1

∑20
j=1(aij − bij)2. Consequently, we

calculate a symmetrical |D| × |D| distance matrix. Each entry of the distance matrix

46

5 Improving Performance

describes the distance between models of the corresponding column and row (diagonal

entries are 0.0). Based on these distances, complete-linkage hierarchical clustering (see

[41]) can be applied to cluster substitution matrices.

Figure 5.1(a) depicts the resulting cluster-dendrogram for the models of Table 2.3. It

can be observed that Dayho� and Dayho�-dcmut, as well as, JTT and JTT-dcmut�as

may be expected�have similar rates. In fact, both model-pairs were created using the

same data to estimate the substitution rates. However, the dcmut versions employ a

slightly di�erent mathematical method to compute substitution rates [43]. Moreover,

moving from left to right in Figure 5.1(a) one can observe four groups of substitution

models (i.e., retroviral models, mitochondrial models, general models, and models cre-

ated with an approach similar to the one of Dayho� and Schwartz [20]).

However, the clusters are not very dense and well separated. That is, the distances

within clusters are not signi�cantly smaller than those between clusters. Frequently,

the silhouette coe�cient (see [68]) is applied to objectively measure a given clustering is

supported. For this purpose, we de�ne the silhouette s(a) of any object a (substitution

rate matrices) in cluster A as the di�erence of a's average dissimilarity (distance) to the

nearest next cluster B (the average of all distances d(a, b) with b ∈ B) and its distance

to A, divided by the maximum distance to any object a′ in A or B. Therefore, the

silhouette s(a) is determined as follows:

s(a) =
d(a,B)− d(a,A)

max(d(a, b), d(a, a′))

with d(a,B) = 1
|B|
∑

b∈B d(a, b), and d(a,A) analogously. Then the silhouette coe�-

cient Sc is the average of the silhouettes of all objects for a given clustering (note that

Sc ∈ [−1; 1]). Values close to 1.0 re�ect relatively smaller within cluster distances than

between cluster distances (objects are well classi�ed). A negative cluster coe�cient, in

contrast, implies that some objects are closer to the neighboring cluster than to their

actual cluster. Figure 5.1(b) depicts the silhouettes for each substitution model w.r.t.

the four clusters of Figure 5.1(a). Moreover the per-cluster average silhouettes and the

silhouette coe�cient are provided.

We computed Sc for all possible clusterings for the dendrogramm of Figure 5.1(a).

Assigning 12 clusters results in the maximum silhouette coe�cient of 0.38. Usually, for

values Sc ≤ 0.5 clusterings are thought to be supported only weakly by the data.

To assess if our clustering is useful, we must show that models within one cluster

usually yield similar likelihood scores. For this purpose, we evaluated the likelihood

scores for data sets of each of the three domains of life (see Section 6.1) with per-

47

5 Improving Performance

partition branch length estimates using each model. Based on these values we compute

corresponding partition distance matrices using the per-partition likelihood scores (one

distance matrix per partition per data set). Thereafter, the partition distance matri-

ces are merged into a comprehensive (data set distance) matrix, by averaging. If our

clustering is useful, we expect the log likelihood scores to cluster in a similar way as

the substitution rates. In other words, we would expect a dendrogram similar to that

of Figure 5.1(a) by applying complete-linkage hierarchical clustering. However, we ob-

tained quite distinct likelihood-based clusters for all data sets (e.g., see Figure 5.2). Even

the closely related models (JTT and JTT-dcmut) produced relatively distinct likelihood

scores. Consequently, the above clustering of substitution rates does not appear to be

promising since it does not correlate well with log likelihood scores.

One explanation may be that we did not include information about the data at hand

during model clustering (the clusters are solely based on substitution rates).

J
T
T

P
M

B

H
IV

w

V
T

m
tR

E
V

cp
R
E
V

m
tZ

o
a

W
A
G

B
lo
su

m

D
a
y
h
o
ff

D
a
y
h
o
ff
-d

cm
u
t

L
G

re
R
E
V

J
T
T
-d

cm
u
t

m
tM

A
M

H
IV

b

m
tA

R
T

F
L
U

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Clus ter Dendrogram

H
e
ig
h
t

Figure 5.2: Hierarchical clustering over all partitions based on log likelihood score dis-
tances for mammalian dataset of [48].

To address this problem, we could introduce a data-aware log likelihood based cluster-

ing approach for each partition. That is, we can apply the clustering for each partition

to obtain model-clusters that actually yield similar scores for a speci�c partition. This

information could subsequently be applied as proposed in the beginning of this section.

However, we did not exploit this approach, yet.

48

5 Improving Performance

5.3 Reducing Assignment Evaluation Costs

The operation dominating run times in all PMA heuristics is the evaluation of the

likelihood for di�erent model assignments. In this section we introduce two strategies

for reducing the computational demands.

Firstly, we focus on reducing the cost for recurring computations in Section 5.3.1.

Secondly, to reduce the overall number of assignments that must be evaluated, we present

a strategy to quickly pre-score assignments (Section 5.3.2).

5.3.1 Lazy Likelihood Computations

As mentioned in Section 4.1, every assignment is evaluated using exactly the same tree

topology, and numerical optimization techniques for optimizing branch lengths and the

α-shape parameter of the Γ distribution for among site rate variation. In fact, it is

important to keep the topology �xed to be able to compare the likelihoods of di�erent

assignments, such as not to confound the tree search and model assignment steps. As,

we usually only apply small changes to the protein model assignment (e.g., changing one

model for a single partition at a time) during the search process, it is rather unlikely

that the branches or α change drastically. Hence, we want to avoid completely re-

optimizing these parameters. Consequently, instead of resetting branch lengths and α

to their initial standard values, we invoke the optimization routines with the values of the

previous assignment (i.e., we re�ne α and the branches). In our tests this modi�cation

only generated minimal deviation in log likelihood scores (smaller than 0.5 log likelihood

units).

Furthermore, randomized search algorithms, sometimes re-inspect the same assign-

ments. To avoid re-computing the likelihood of such assignments, we maintain a list

that archives likelihood scores for assignments that have already been inspected. How-

ever, to avoid re-computing likelihoods, it is necessary to lookup each assignment before

evaluation. Depending on the data-structure chosen to implement the archive, this task

can become quite expensive. Also, as typically only few assignments are evaluated more

than one time, it is not necessarily worth to maintain and look-up the archive. More-

over, it may not be worth to develop and implement elaborate data structures for the

archive.

Because of the corresponding low development e�ort we implemented the archive as

unsorted list for an initial evaluation. That is, assignments are appended to the end

49

5 Improving Performance

of the list when they are evaluated. Thus, the list must be scanned sequentially before

every assignment evaluation. Applying a hash table would certainly be superior w.r.t.

the access time. However, our analyses in (see Section 6.3.4) revealed short archive

look-up times. Therefore, we did not evaluate using a hash table for the archive, yet.

5.3.2 Approximate Assignment Scoring

Both approaches presented in Section 5.3.1 promise to reduce execution time for PMA

heuristics by avoiding unnecessary work. Therefore, these approaches do not, or only

slightly, in�uence the quality of results. Here we develop a technique that promises to

reduce execution time even more. It may cause worse results, though. In analogy to the

work of Rana et al. in [61], we aim at quickly identifying �low quality� assignments. That

is, assignments that are not expected to improve upon a currently best assignment. We

call the expected quality of an assignment its potential. Because likelihood computations

dominate the execution time of PMA heuristics it would be bene�cial to avoid evaluating

assignments of low potential.

−235,000

−234,000

−233,000

−232,000

pe
r-
pa
rt
it
io
n
sc
or
e
[ln
L
]

0 20 40 60 80 100

−246,000

−245,000

−244,000

−243,000

Execution progress

JB
L
sc
or
e
[ln
L
]

Figure 5.3: Log Likelihood scores of random 100 model assignments under joint and
per-partition branch length estimates (correlation is 0.93).

In order to provide the rationale for the approach we develop in this section it is

important to note that we observed a strong correlation between likelihood scores using

per-partition ibl(s) and joint l(s) branch lengths estimation in many initial analyses.

That is, a peak in the likelihood function for a joint branch length estimate frequently

coincides with a peak of an independent branch length estimate. Figure 5.3 depicts

50

5 Improving Performance

likelihood scores (joint and per-partition) for 100 random assignments of a 50 partitions

and 50 taxa data sample (the sample was extracted from the eukaryotes data set, see

Section 6.1).

It can be easily observed that the scores are correlated (the pearson correlation co-

e�cient is 0.93). However, as already mentioned in Section 4.2.1, the optimum for

per-partition branch lengths optimization may be di�erent from the optimal PMA as-

signment. Because of the strong correlation, it seems to be reasonable to approximate

the potential of an assignment from its per-partition likelihood score, though. In other

words, we approximate the potential of an assignment before actually evaluating it.

Only if the potential is promising, we compute the exact likelihood. For this purpose we

de�ne the potential of an assignment s by a function pS : s→ {true, false} (we evaluate
s only, if pS(s) = true). To determine pS(s) we include values of the likelihood score of

per-partition branch length estimates that can be computed quickly. In particular, we

exploit the following three statistic properties:

1. the mean ibl(s ∈ S) of all assignments in S

2. the accumulated average ibl(sj) with sj the assignments that have already been

visited

3. the moving average ibl(sw) of the w most recently visited assignments

for per-partition branch length estimates (ibl). Therefore, for example, p may be de�ned

as follows:

pS(si) = ibl(s)− ibl(s ∈ S) > 0 ∧ ibl(s)− ibl(sw) > 0 ∧ ibl(s)− ibl(sj) > 0

to exploit all properties simultaneously.

Which measures are helpful may depend on the data. Figure 5.4 depicts the proposed

statistics, as well as the JBL and per-partition likelihoods, for an execution of the Hill-

Climbing heuristic on the sample of the eukaryotes data set from above. It can be

observed that the mean of per-partition likelihood scores is comparatively low (most

of the evaluated assignments have better per-partition log likelihood), and therefore

might not very well suited for determining if an assignment is promising. Although the

accumulated average increases as the likelihoods of the evaluated assignments increases,

it is also underestimates what would be expected to be a promising assignment. In

other words, if we only apply the mean and accumulated average, pS(s) would evaluate

to true for most assignments. However, we expect these measure to be helpful to avoid

the evaluation of many poor assignments in the initial phase of Hill-Climbing and SA.

We expect the moving average to be most suitable to approximate if an assignment is

51

5 Improving Performance

−233,000

−232,000

−231,000

−230,000

−229,000

pe
r-
pa
rt
it
io
n
sc
or
e
[ln
L
]

Score Accumulated average
Mean Moving average

0 500 1,000 1,500 2,000 2,500

−243,000

−242,000

−241,000

−240,000

−239,000

Execution progress

JB
L
sc
or
e
[ln
L
]

Figure 5.4: Hill-Climbing algorithm on the data sample of Figure 5.3 (due to readability
only every 10th data point is plotted). The plot includes the likelihood
scores of the current assignment for JBL and per-partition branch lengths
estimation. Furthermore, the mean, the moving average, and the cumulated
average for per-partition branch lengths estimation are included.

promising. Moreover, we can adapt the window size to decrease or increase the number of

evaluated assignments. If we apply a window of size 1, the moving average is identical

to forcing a per-partition likelihood score better than that of the former assignment.

Choosing very large window, on the other hand, brings the moving average closer to

the accumulated average. We expect a relatively small window (e.g., {2, . . . , 10}) to
perform best. Thereby, we mean that it allows the evaluation of comparatively good

assignments, always depending on the current �quality level� of the search. We present

the evaluation of all criteria in Section 6.3.4.

52

5 Improving Performance

Chapter Summary

In this chapter we developed several approaches to improve the performance of the PMA

heuristics of Chapter 4.

Firstly, we discussed how combinations of distinct, self contained heuristics can help

to improve the execution time and result quality. We expect seeding of improvement

heuristics, to result in signi�cantly better performance. That is, we either expect shorter

execution times at similar quality, or equal execution times for better quality. The results

, however, may vary for the basic heuristic strategies.

Secondly, we introduced a substitution rates based clustering of protein evolution

models. The goal is to identify models that are likely to result in similar log likelihood

scores, and thereby reducing the number of candidate models. However, our clustering

is not able to identify models that yield similar scores. We expect this to be due to the

fact that we did not include knowledge of the data in the clustering. We also presented

a clustering strategy that seems to be able to overcome this drawback. However, until

now we did not exploit this approach.

The approachers of the remaining two sections aim at reducing the e�ort for like-

lihood computations. Because, likelihood computations are the dominating task of all

PMA heuristics, it would be bene�cial to either compute these values faster or safe some

computations. We followed two distinct approaches. The one aims at reducing computa-

tional demand by exploiting the frequently small changes we apply to model assignments

and archiving already evaluated likelihood scores. These strategies are not expected to

have any qualitatively in�uence. The second strategy proposes to predict, the potential

of an assignment that is due to be evaluated. If we predict a model assignments of bad

quality, we could avoid evaluating it. Thereby, many none promising assignments could

be avoided to consume signi�cant computational resources. However, predictions may

be wrong. Therefore, actually promising assignments may not be evaluated.

53

6 Experimental Setup and Results

So far we introduced the PMA problem and developed di�erent strategies to e�ciently

assign models. Nonetheless, there remain questions that need to be answered. Un-

fortunately, these cannot be answered at an analytical level only. In this chapter we

experimentally evaluate the proposed approaches.

We start by describing the data sets we used, the computer infrastructure, and a

method to measure the distance between trees in Section 6.1. Thereafter, the key ques-

tions are outlined in Section 6.2. The results of the evaluation are present in Section 6.3.

6.1 Preliminaries

Experimental Data: There does not exist a general benchmark for evaluating phylo-

genetic approaches. Therefore, in order to provide as general as possible experiments we

use a variety of real and synthetic data sets. To reduce the impact of organism-speci�c

properties of real data, we use data from each of the three domains of life. For this pur-

pose we obtained aligned and partitioned data sets from two studies [85, 48]. Table 6.1

summarizes the properties of the data sets.

Domain (abbr.)
Number of
species

Number of
partitions

Length Source

Eukaryotes (euk) 117 129 37476 Meusemann et al. in [48]
Bacteria (bac) 992 56 20609 Yutin et al. in [85]
Archaea (arc) 86 68 17639 Yutin et al. in [85]

Table 6.1: Test data sets of each of the three domains of life and their properties.

In addition to real data sets we conducted experiments with synthetic data of varying

size. These data sets were simulated for di�erent input trees using the INDELible

software [27].

All data sets (as well as the implementations of the heuristics) are available for down-

load at http://exelixis-lab.org/joerg/pma.tar.gz.

54

http://exelixis-lab.org/joerg/pma.tar.gz

6 Experimental Setup and Results

Computer Infrastructure: Our implementation of the PMA heuristics relies on the

POSIX threads based parallel likelihood function of RAxML-Light. We conducted ex-

periments on two di�erent multi core systems with Intel and AMD CPUs. Table 6.2

provides the system speci�cations.

Because we only use shared-memory parallelization, the majority of experiments (es-

pecially the time consuming tasks) were evaluated on the magny system. The nehalem

system was mostly used for initial analyses on small data sets.

Codename CPU Cores (CPUs) CPU clock RAM
Nehalem Intel Xeon E5530 8 (2) 2.4 GHz 24 GB
Magny AMD Opteron 6174 48 (4) 2.2 GHz 124 GB

Table 6.2: Computer con�gurations expiriments were run on.

Tree Distance: To evaluate our approaches we need to compare di�erent tree topolo-

gies. For this purpose we apply the commonly used partition distance (also called

Robinson-Foulds (RF) distance according to the authors of [66]). Note that every branch

of a tree separates two sets of taxa (nodes connected to one end of the branch, and those

connected to the other end). That is, an edge de�nes a bipartition. The partition dis-

tance is de�ned by the total number of bipartitions that are in only one of the trees. If

all bipartitions are identical, the tree topologies are identical as well (RF distance value

of 0.0). Usually the number of unshared bipartitions is normalized by the number of

possible bipartitioning. Thus, a distance of 1.0 refers to none shared bipartitions (this

is the maximum RF distance). The RF distance does not compare branch lengths, that

is, as long as the topology is the same the distance is 0.0. For an in-depth explanation

of the RF distance see [83].

6.2 Key Questions

In this section we state the objective key questions we want to answer. Firstly, we

focus on the importance of the PMA problem, secondly on the performance of the basic

heuristics of Chapter 4, and lastly on assessing the performance improvement strategies

of Chapter 5.

Does PMA matter? Until now we did not deal with the impact of PMA. In practice

it could be the case that random and optimal model assignments yield the same tree.

In particular, the naïve heuristics, which can be quickly evaluated, may �nd model

55

6 Experimental Setup and Results

assignments that generate the same phylogeny as the optimal PMA assignment. In

other words, it may not be important to use the optimal PMA. We say that PMA

matters, if the naïve model assignment returns suboptimal phylogenies. An additional

goal is to assess how frequently the trees di�er.

It is obvious that the naïve heuristics return an optimal assignment, if the data only

contains one partition. That is, PMA does not matter for such small alignments. If it

matters for more than one partition, it would be interesting to know what the impact of

PMA is w.r.t. the number of partitions. Not only do we know that the naïve heuristics is

optimal for one partition, it is also widely accepted that evolutionary signal increases for

more partitions. As the signal increases we suspect the impact of inappropriate model

assignments to decrease. We suspect a range of partition numbers for which PMA is

of outstanding importance (for which RF distances between ML trees inferred with the

true and random assignments is comparatively large).

Which heuristics are suitable? We expect distinct PMA heuristics to perform di�er-

ently (some may perform poorly). Of course, one wants to use the best search strategy

w.r.t. result quality and execution time.

Usually, heuristics are developed to �nd as good as possible results. Hence, we are

interested in the result quality of the heuristic PMA strategies. Heuristic strategies

should at least perform better than a random search. We call a heuristic strategy

suitable, only if it outperforms random search on average (of course the random search

must be allowed to consume the same amount of computation resources).

Moreover, we want to know which strategies obtain which quality at which cost.

For example, w.r.t. algorithmic complexity, the naïve heuristics clearly outperform the

greedy approach (see Sections 4.2.1 and 4.2.2). In other words, it is faster, if the number

of included partitions is large. The execution time for improvement heuristics depends

on the data. Some algorithms may not even converge in reasonable time for large PMA

instances. One would either prefer the heuristic strategy that converges to the best

result, the strategy that �nds the best current result after reasonable time, or the one

that quickly determines a good enough result.

Do optimization approaches accelerate the search? The main goal of the opti-

mization approaches of Chapter 5 is to reduce computational cost. However, because

their aim is to quickly guide the search to high-quality areas, they may also improve

the quality of results. Some optimizations can also cause �good� assignments�or even

larger parts of the search-space�to not be evaluated. Therefore, they may generate

56

6 Experimental Setup and Results

worse results, as well. In order to asses these e�ects, we implemented the improvements

for appropriate heuristic strategies. The results of the �improved heuristics� must be

compared to the corresponding results without optimizations. Only if equally good or

better results can be obtained an optimization strategy will be useful.

Which approach should be used when? Certainly, for practical usage it is frequently

valuable to accept worse solutions in favor of faster execution times. We analyze the

trade-o� between execution times and result quality. To address this question, it is

necessary to use reasonable real data sets. Because, executing the heuristics can be

quite time consuming, we assess this question for the most promising approaches only.

6.3 Results

In this section we describe the setup of our experiments and present the results to answer

the above questions.

In Section 6.3.1 we start by assessing the importance of PMA. Thereafter, the qual-

ity of the basic PMA heuristics is evaluated in Section 6.3.3. Finally, we assess the

performance improvement approaches in Section 6.3.4.

6.3.1 Importance of Protein Model Assignment

To show that PMA matters, we show that the naïve heuristics frequently returns sub-

optimal model assignments. For this purpose we extracted 50 subsamples from each of

the data sets in Table 6.1. In order to be able to evaluate the samples exhaustively,

the number of partitions was reduced to three. Because, the occurrence of high RF

distances depends on the tree size (see [83]), we also subsampled 50 taxa. Thereafter,

we computed and compared the optimum PMA and the naïve optimum for each sample.

On average, model assignments di�ered in 57% of all 150 samples. For the archaea data

set in 60%, for bacteria, in 58%, and for the eukaryotic samples, assignments di�ered

in 54% of all subsets. Whenever optimal and naïve assignments were di�erent, we

conducted a complete ML tree inference (one tree search per assignment). Di�erent

model assignments resulted in a identical ML trees in only 14% of the cases. On average,

we obtained a RF distance of 9%. Put di�erently, in 49% of all cases the naïve heuristics

produced a di�erent ML tree with an average RF distance of 9%. Moreover, the naïve

optimum did never result in a better (i.e., higher likelihood) ML tree than the PMA

57

6 Experimental Setup and Results

optimum.

Furthermore, we also want to provide guidance regarding cases when model assign-

ment is particularly important. However, for this purpose the number of included par-

titions must be variable. As an exhaustive search is computationally too expensive

even for small numbers of partitions, we used simulated data. Therefore, instead of

computing to the optimal PMA, we used the �true� model assignment as reference. In

particular, we simulated data sets for di�erent tree shapes with 40 taxa and the number

of partitions increasing exponentially from 2 to 128. For these data sets, we computed

the naïve optimum per data set and conducted a full ML tree search for the�in this

case�true model assignment, the naïve assignment, and a random model assignment.

Thereafter, we compared the RF distances of these �naïvely� and �randomly� inferred

trees to the phylogeny obtained for the true model assignment. Unfortunately, we did

not �nd a dependency between the number of partitions and the accuracy of the naïve

heuristics (all RF distances are 0.0). Neither did we resolve a clear relationship be-

tween the mismatch (large RF distance in resulting phylogenies) of random and true

assignments.

As we already showed that PMA matters, we guess that we could not examine cor-

relations because usually tree inference for simulated data is easier than for real data.

This is mainly due to the fact that synthetic data is more regular.

6.3.2 Parameter Setting

In order, to assess the performance of the PMA heuristics, we must �rst specify their

parameters. The amount and type of parameters varies among the heuristics. Table 6.3

summarizes the parameters. For setting the parameters, we di�erentiate between on-o�

PMA heuristic parameters
Greedy sort/do not sort in advance
Hill-Climbing steepest/next ascent strategy
SA Starting temperature T0 ∈ N, temperature decrement β ∈ [0; 1]
GA Population size Npop ∈ N , mutation rate Pm ∈ [0; 1]

Table 6.3: Parameters and their corresponding domain of the PMA heuristics.

switches and discrete/continuous parameters. We start by evaluating the heuristics that

only use on-o� switches (greedy assignment composition and Hill-Climbing). Thereafter,

we assess the parameters for the remaining heuristics (SA and GA)

58

6 Experimental Setup and Results

On-o� Switches

Usually, On-o� Switches are comparatively easy to specify. Furthermore, greedy as-

signment composition and Hill-Climbing only have one parameter. For both heuristics

these provides a single algorithmic choice. To determine if assignments should be sorted

in advance (greedy), or steepest or next ascent should be applied (Hill-Climbing), we

evaluate each setting for di�erent data sets (also PMA instances). We can, however, not

guarantee that the choices are suitable for any PMA instance.

Data sample Greedy Hill-Climbing
sorted (1) vs. unsorted (2) next (3) vs. steepest (4)

sourcen×#taxa lnL(1) − lnL(2) t(1)/t(2) lnL(3) − lnL(4) t(3)/t(4)

euk30×10 -3.65 1.02 0.06 1.43
arc20×20 -3.86 1.10 0.06 1.37
bac20×20 -8.78 1.04 0.18 1.37
euk20×20 32.01 1.10 0.00 1.51
arc30×20 3.03 1.11 - -
bac30×20 -10.01 1.01 - -
euk30×20 9.57 1.08 - -
arc50×50 -20.22 1.05 - -
bac50×50 -27.34 1.01 - -
euk50×50 90.25 1.01 - -

Table 6.4: Results of experimental evaluation of on-o� switches for Greedy Assignment
Composition and Hill-Climbing. The table summarizes the mean result score
and execution time di�erence.

We extracted multiple data subsamples of 30 partitions and 10 taxa from the eu-

karyotic data set. Thereafter, we evaluated all algorithmic settings on these samples.

Because likelihood scores and execution time for distinct data samples must not be

compared to each other, we compare the algorithmic options per data sample. In Ta-

ble 6.4 we average the per-sample score di�erence in log likelihood units (note that

a = b
c
⇔ ln(a) = ln(b) − ln(c))) and the execution time ratio per data source and

sample size. In this �rst test, we found that both parameters have comparatively small

e�ect on the result quality. For the greedy heuristic the runtimes were also similar. We

obtained comparatively shorter execution times for the steepest ascent strategy, though.

To retrieve more reliable results we evaluated both parameter settings for further data

subsample of size 20×20 from data of all three domains. For Hill-climbing we obtained

similar results for the additional executions. Therefore, we suspect better performance

for the steepest ascent strategy in general. Because for the greedy heuristic the results

did not reveal clearly a superior strategy with respect to the result quality, we conducted

59

6 Experimental Setup and Results

two additional evaluations for subsample sizes of 30×20 and 50×50. In summary we can

acknowledge the theoretical results of Section 4.2.2 that the greedy heuristic becomes

slower for data that is sorted according to partition length. We did, however not identify

which heuristic is should be preferred in terms of log likelihood scores.

Nonetheless, we apply the sorting strategy for our remaining evaluations, because it

explicitly speci�es an order among partitions. For the unsorted greedy heuristic the

partition order is just the random order of the data subsamples.

Discrete and Continuous Parameters

Only SA and GA include discrete or continuous parameters. For these heuristics it is

di�cult to determine good parameter setting because of the in�nite parameter domain.

Therefore, such parameters cannot be evaluated for all possible settings. To reduce the

parameter ranges we apply previous results.

SA and GA include more than one parameter. Because these are not independent

many combinations may be applied. Moreover, both heuristics rely on random num-

bers (e.g., to create candidate assignments). If the random number seed is identical for

di�erent executions, for SA, initial assignments are identical, whereas for GA, the indi-

viduals of the initial population are. A di�erent seed causes di�erent results, though.

Therefore, we repeat every analysis 10 times and average (always removing highest and

lowest values) results over the replicates, to reduce random variations.

In [62], Rardin and Uzsoy suggested to retrieve initial parameter con�gurations by

using su�ciently small problem instances. Because these can be evaluated comparatively

quick, many parameter con�gurations may be assessed. Therefore, we extracted test

data from the eukaryotes data set, which contains 20 partitions for 10 taxa. For this

data set we evaluated SA and GA with a variety of parameter combinations on the

nehalem computer con�guration (see Table 6.2). Next we describe the experiments for

SA, and thereafter the setup for GA.

Simulated Annealing: SA largely depends on the temperature and its decrement.

The faster the temperature decreases the faster the acceptance probability decreases.

Therefore, the cooling schedule is of major importance for the e�ectiveness. According

to Al-Araidah et al. (see [7]) in beginning the temperature should be hight enough to

allow almost any neighborhood move. Otherwise SA is likely to end with a solution close

to the starting solution. If the temperature is too high, though, SA may degenerates

into an almost random search in the initial phase. We approximate the maximum

60

6 Experimental Setup and Results

di�erence of two neighboring assignments (assignments with a varying model for one

partition) on per-partition log likelihood scores. Similar to the clustering corresponding

to Figure 5.2, we evaluate the distances between all model per partition, for this purpose.

The maximum per-partition distance is then applied as starting temperature.

Typical values for the temperature decrement β lie between 0.8 and 0.99 (see [7]).

However, according to Lundy and Mees (see [47]), the temperature should be cooled

su�ciently slow, if only one iteration is permitted per temperature. The slower the

temperature decreases, the longer the execution time, though. Because the temperature

decreases exponentially, we expect the execution time to be exponentially correlated to

the β parameter. We evaluated the β cooling parameter for values varying from 0.81 to

0.999 with steps becoming denser from 0.04 to 0.001 between 0.99 and 0.999.

0.96 0.97 0.98 0.99

−45,300

−45,200

−45,100

β

m
ea
n
sc
or
e
[ln
L
]

500

1,000

m
ea
n
ex
ec
.
ti
m
e
[s
ec
.]

Figure 6.1: SA log likelihood scores and execution time of the β cooling parameter opti-
mization averaged over 18 runs (highest and lowest values were trimmed in
advance).

Figure 6.1 summarizes the achieved result qualities and execution time for β > 0.96.

One can observe that, as expected, the execution time increases exponentially with in-

creasing β. We want to use a value, such that, we obtain good results, as quick as

possible. β = 0.992 seems to be a reasonable choice, because we observe a compar-

atively better likelihood score, whereas the execution time does not yet increase too

dramatically.

Genetic Algorithm: We need to provide two parameters as well for the GA�the

population size and mutation rate. Obviously, the population size directly in�uences

the execution time (the more individual per generation the higher the chance ti improve

upon the currently best score, and consequently less chance to converge). Therefore, we

61

6 Experimental Setup and Results

also expect the scores to become better with larger populations. Common values for the

population size lie between 50 and 100.

The in�uence of the mutation rate is more di�cult to predict. Usually quite small

values are applied for this purpose. In [33], Haupt et al. propose a value between 0.1

and 0.3. However, Haupt et al., expect a binary encoding of solutions, that is, the

mutation rate applies to a single bit of the encoding. Because we do not use encoded

solutions here, we expect higher mutation rates to be reasonable, as well. Consequently,

we evaluate values from 0.1 up to 0.61 (with step size 0.04).

In summary we evaluate 11× 15 = 165 parameter combinations for the GA approach

to PMA (11 values for the population size and 15 values for the mutation rate). For

this purpose the test data of the parameter optimization of SA was applied.

50 60 70 80 90 100

−45,600

−45,590

−45,580

Npop

m
ea
n
sc
or
e
[ln
L
]

0 0.2 0.4 0.6

Pm

150

200

250

300

m
ea
n
ex
ec
.
ti
m
e
[s
ec
.]

Figure 6.2: GA log likelihood scores and execution time over population size Npop and
mutation rate Pm (averaged over 18 runs, excluding the highest and lowest
value).

We aggregate the results for the population size and and mutation rate in Figure 6.2.

As may be expected, the execution time increases almost linearly with the population

size. Moreover, a very low mutation rate (< 0.1) seems to yield bad results. For

the remaining rates, likelihood scores vary only slightly. Note however, that result

quality is worse for GA if compared to SA (y axes of the corresponding �gures are

scaled di�erently). Therefore, we extract the parameters that resolved the best score

for GA. That is, we use 0.33 for the mutation rate and a population size of 85 for later

experiments.

62

6 Experimental Setup and Results

6.3.3 Suitability of Basic Heuristics

The most simple strategy to �nd an improved solution is a random search. However,

usually more targeted searches perform much better. Therefore, in order to justify the

PMA heuristics, we must ensure that the basic heuristic strategies perform better than a

random search (given the same computational resources, e.g., execution time or number

of assignment evaluations). If a heuristic strategy does not perform better, random

search would be equally suitable.

For the purpose of evaluating our strategies, we subsampled 5 alignments (30 parti-

tions and 20 taxa) from each of the data sets from the three domains. Based on these

samples, we assessed the suitability of all heuristic strategies. That is, we compared the

heuristic result to the random optimum that was found in the same time. GA is the only

heuristic that returned worse assignments than the random search in some runs. On

average it failed for 9 runs: 2 for eukaryotic samples, 4 for bacteria, and 3 for archaeal

samples.

We could have included algorithmic improvements for the suitability assessment, as

well. In this case we probably would have found that GA outperforms random search.

However, we would expect these di�erent �ndings to be due to the improvements (i.e.,

GA remains to be unsuitable for PMA). Therefore, we do not evaluate GA in anymore

detail.

6.3.4 E�ect of Algorithmic Improvements

In this section we evaluate the improvements introduced in Chapter 5. Firstly, we assess

the e�ect of lazy likelihood computations, secondly combinations of heuristic approaches,

and lastly, we evaluate the in�uence of likelihood pre-scoring.

Lazy Likelihood Computations: We assess lazy likelihood computations before the

other techniques, because we expect valuable execution time improvements, with minor

in�uence on the quality of results. Therefore, evaluating the remaining concepts may

be accelerated by using lazy likelihood computations.

We evaluate these strategies on the 20 partitions 20 taxa data samples that were

already used to assess the suitability of the PMA heuristics. For α and branch length

re�nement we executed 10 random neighborhood walks of length 100 (evaluation of

100 subsequent neighboring assignments). Each walk was evaluated with and without

complete optimization of α and the branch lengths. On average we obtained an accel-

eration of factor 2.8 by only re�ning α and the branch lengths instead resetting and

63

6 Experimental Setup and Results

re-optimizing them. The likelihood scores of all evaluated assignments di�ered by only

0.35 log likelihood units on average.

Assessing the usefulness of the archive is somewhat more di�cult, because ideally

we would need to know how frequently heuristics re-visit assignments. However, we are

mainly interested in an initial assessment of how bene�cial an archive can be. Therefore,

we simply evaluate a random walk of 1000 assignments for every data sample. To include

duplicate assignments, each walk was generated by randomly sampling from a prede�ned

set of 1000 random assignments. Thereafter, we evaluated each walk with and without

archiving. We found that for all samples, the time spent to search the archive for already

visited assignments was far less than a second on average.

Seeding of Improvement Heuristics: We assessed the e�ect of seeding improvement

heuristics by conducting experiments for various data samples. In particular, we con-

ducted model searches using the Hill-Climbing and SA algorithm, with random initial-

ization, and seeded with the naïve and sorted greedy result (i.e., three di�erent initial-

ization strategies per improvement heuristic and data sample). Table 6.5 summarizes

the results of the experiments for Hill-Climbing and SA. We compare the log likelihood

values of the seeded heuristic to those of random initialization by determining their dif-

ference. Thereafter, we average the di�erences for per data source and sample size (e.g.,

lnL(greedy) − lnL(random)). In other words, we use the randomly initialized execution as

reference. Consequently, if applying a seed improves the likelihood we expect a positive

value. Execution time is represented by the ratio of the number of evaluated assign-

ments with seeding to those of random initialization. Therefore, #s(greedy)/#s(random) is

smaller than one, if less assignments are evaluated by applying a greedy seed.

It can be observed that seeding the Hill-Climbing algorithm only has a minor e�ect

on result quality. The execution time, however, improves. The amount of improvement

depends on random variation, (for some data samples random initialization evaluated

less assignments). On average seeding reduced the number of evaluated assignments

signi�cantly (the naïve seed by ∼15% and the greedy seed by about ∼25%). Therefore,
seeding reduces the number of poor assignments in the initial phase. For SA, we ob-

tained better log likelihood scores for all evaluated data samples, by seeding. In average

these were better, for the greedy seed. The number of assignment evaluations was not

a�ected. For SA, in contrast, the number of evaluated assignments depends on the

starting temperature and its decrement. Therefore, one certainly does not expect major

execution time improvements. However, the procedure pro�ts from the seed w.r.t. the

result quality.

64

6 Experimental Setup and Results

Data sample naïve (1) vs. random (3) greedy (2) vs. random (3)
sourcen×#taxa lnL(1) − lnL(3) #s(1)/#s(3) lnL(2) − lnL(3) #s(2)/#s(3)

Seeded Hill-Climbing vs. random initialization
arc20×20 -0.16 0.72 -0.21 0.59
bac20×20 -0.17 1.05 -0.18 0.93
euk20×20 0.00 0.83 1.35 0.69

Seeded SA vs. random initialization
arc20×20 12.85 1.0 14.17 1.0
bac20×20 6.83 1.0 9.47 1.0
euk20×20 13.04 1.0 19.67 1.0

Table 6.5: Result quality and �execution time� of seeded Hill-Climbing and SA for di�er-
ent data samples. The execution time is presented by the ratio of the number
of assignments of the initialization strategies. All results from either naïve or
greedy seed were compared to those with random initialization directly. The
rows contain the average per data source and size of the data sample.

Potential Approximation: We already presented an example for which log likelihood

scores under joint and per-partition branch length estimates are strongly correlated

in Section 5.3.2. This observation forms the basis to approximate the potential of an

assignment. Therefore, in order to verify that this property holds for a larger number

of PMA instances we evaluated the correlation for 100 random assignments for data

subsamples of 20×20 and 50×50 from the data source of Table 6.1. On average we

obtained a correlation coe�cient of 0.93 (for all data samples the correlation was above

0.82).

From the explanations in Section 5.3.2 we expect that the moving average may be most

promising to approximate the potential of an assignment. However, for this measure

we need to determine a suitable window size. A larger window size usually causes

an increasing amount of assignment evaluations. Furthermore, in an initial evaluation

we found that applying the mean score computed with per-partition branch length

estimates as a lower bound to estimate the potential of an assignment is critical. This

is due to its constant value (it does not depend on progress and performance of the

search). If heuristics are initialized with a poor assignment (such that its total per-

partition estimated score is comparatively smaller than the average score) it might be

the case that all neighboring assignments have poor quality, as well. Therefore, none of

these assignments would be evaluated. Consequently, only the accumulated and moving

average should be applied to approximate the potential of an assignment.

We evaluate the suitability of the accumulated and moving average for approximating

the assignment potential on 10 data subsamples (30 partitions and 20 taxa) from each

65

6 Experimental Setup and Results

real data set of Table 6.1. For this purpose we execute Hill-Climbing and SA for the

data samples with varying window sizes of 1, 2, 3, 5, 10, and 15. Thereafter, the results

of di�erent window sizes have been compared to those without approximation of the

potential (w.r.t. the number of likelihood computations and the log likelihood score

of the corresponding best PMA). Table 6.6 summarizes the results by averaging over

the source of the data subsamples and the window size. We found that applying the

arc30×20 bac30×20 euk30×20
window ∆lnL

#s(1)
#s(2)

∆lnL
#s(1)
#s(2)

∆lnL
#s(1)
#s(2)

SA
1 10.11 1.97 19.44 2.04 9.59 2.02
2 12.45 1.74 15.98 1.82 13.57 1.78
3 -0.95 1.63 2.10 1.66 -6.57 1.76
5 -6.77 1.55 24.31 1.58 -2.64 1.61
10 3.19 1.48 11.55 1.50 5.94 1.49
15 15.09 1.43 12.10 1.45 8.29 1.44

Hill-Climbing
1 0.00 2.01 0.23 2.01 0.77 1.80
2 0.01 1.78 0.22 1.82 0.37 1.71
3 0.00 1.80 0.22 1.75 0.00 1.66
5 0.00 1.73 0.22 1.59 0.00 1.55
10 0.00 1.60 0.21 1.67 0.00 1.47
15 0.00 1.55 0.22 1.51 0.00 1.47

Table 6.6: E�ects of approximating the potential of assignments on SA and Hill-
Climbing. The log likelihood di�erences of the run without optimization and
those of the corresponding heuristic by ∆lnL. Analogously, #s(1)

#s(2)
represents

ratio of the number of likelihood computations without (1) and with (2) the
optimization. All values are averaged for 10 di�erent runs.

potential approximation strategy accelerates SA and Hill-Climbing similarly, by a factor

between ∼1.5 and ∼2, mostly depending on the window size. For small window sizes the

number of likelihood computations reduces more than for higher window sizes. For Hill-

Climbing there is only a very small e�ect on the obtained result quality, on average. For

SA even better assignments were found with a window size of 3. Figure 6.3 depicts an

execution of the Hill-Climbing algorithm with and without approximating the potential

of assignments. The plot is more smooth if potential approximation is applied, because

many the lower values are not evaluated due to their low potential.

66

6 Experimental Setup and Results

0 500 1,000 1,500

−118,000

−117,000

−116,000

standard progress

lik
el
ih
oo
d
sc
or
e
[ln
L
]

0 500 1,000 1,500

progress with Potential approx.

Figure 6.3: Exemplary execution of the Hill-Climbing algorithm without (left) and with
(right) approximation of the potential of assignments (window size w = 5)
on archaea data subsample that are averaged in Table6.6.

6.3.5 Performance Evaluation

Until now we did not comprehensively compare di�erent heuristics to each other. To

provide some guidance which heuristic is best under which circumstances, we evaluated

the most promising heuristics on data subsamples with 50 partitions and 50 taxa from

each data set (5 samples per data set) of Table 6.1 on the magny system. The goal is to

compare their performance to each other. During this evaluation we focus on answering

which heuristic is either most suitable w.r.t. execution time or the result quality.

For this purpose we executed the naïve heuristics, the greedy assignment composition,

as well as SA and Hill-Climbing with all initialization strategies for each sample. Because

we know from Section 6.3.4 that usually the randomly initialized versions perform similar

or worse, for either result quality or execution time, we �rst compared the results of the

seeded runs of SA and Hill-Climbing to those initialized at random. For Hill-Climbing we

found that the naive seed results in shortest execution time on average (∼ 38 minutes).

A greedy seed resulted in better likelihood scores, though (232 lnL better than random,

and 12 lnL better than with the naïve seed). For the greedy seed the execution time

was 45 minutes on average. For SA, greedy and naïve seed executed almost equally long

(naïve: 46 minutes, greedy 45 minutes). Also for SA did the greedy seed yield better

likelihood scores (on average 22 lnL better). Therefore we we propose to use a greedy

seed if improvement heuristics are applied.

In the second step we compare SA and Hill-Climbing with greedy seed to the results

obtained by the naïve heuristics and greedy assignment composition. As expected the

naïve heuristic is the fastest heuristic (on average it spends only 15% of the mean

67

6 Experimental Setup and Results

execution time of the heuristics). With respect to the likelihood score all heuristics

performed quite similarly, whereas on average Hill-Climbing outperformed the other

heuristics slightly (with a di�erence of 6.24 lnL to the averages of the results of all

heuristics).

Chapter Summary

Initially, we assessed the importance of the PMA problem in this chapter. For this

purpose we compared the naïve model assignment to the exhaustively computed optimal

PMA for small data subsamples. On average the model assignments di�ered in 57%.

Out of these cases we obtained and average RF distance of 9% between fully optimized

ML trees for the naïve and optimal model assignment. Therefore, we conclude that

PMA is important.

To assess the usefulness of our PMA heuristics, we �rst determined reasonable setting

for their parameters. Thereafter, the suitability of the heuristics for the PMA prob-

lem has been assessed by comparing each to a random search. The GA is the only

only heuristic that returned worse result than the random search in some of the cases.

Therefore, we do not expect it to be well suited for PMA.

Furthermore, we evaluated the improvement strategies of Chapter5. We found that

re�ning the values for α and the branches provides signi�cant acceleration. The like-

lihood scores have been a�ected only slightly by this optimization. The bene�t of the

archive depends on how frequently a heuristic may revisits an assignment. Our exper-

iments, however, revealed that searching the unsorted list was faster than a second for

distinct random walks of lengths 1000. Therefore, it does not seem important to to use

a more comprehensive data structure.

Seeding of the improvement heuristics showed distinct e�ects. For SA we obtained

better likelihood scores comparable time, whereas the execution time could be reduced

for the Hill-Climbing algorithm. Further acceleration up to a factor of 2.0 can also be

obtained by the approximating the potential of assignments that are to be evaluated.

In summary, we found that the di�erences of the heuristics w.r.t. the result quality

are not very large. Therefore, we suspect the naïve heuristics or greedy assignment

composition to be su�cient for most analyses. We did, however, not comprehensively

evaluate the impact on the resulting ML trees, yet. If result quality is of major impor-

tance Hill-Climbing should be used. However, we also obtained the longest execution

times for the Hill-Climbing algorithm.

68

7 Conclusions and Outlook

This chapter provides the overall conclusions of the thesis. We concentrate on reviewing

the results of the thesis. Furthermore, we outline future work.

First we summarize the essential aspects and results of this thesis in Section 7.1.

Thereafter, important future directions of future work are described in Section 7.2.

7.1 Summary and Conclusions

In this thesis we introduced and assessed a combinatorial optimization problem called

protein model assignment (PMA). For this purpose we �rst outlined some basics of

phylogenetics. In particular, we summarized the key concepts of the maximum likelihood

method (ML) for phylogenetic inference. Protein-based phylogenetic inference is of

outstanding importance, in particular when no DNA data is available or branches are

expected to be long (i.e., organisms evolved with many mutations). Furthermore, we

explained the usage of explicit stochastic models in ML inferences.

There is no related work that deals with the task of assigning protein models to genetic

partitions for the purpose of ML inference with joint branch length estimates. However,

we described the task of model selection and its di�erences from PMA. Thereafter, we

presented the formal de�nition of the PMA problem and discussed its complexity. To

e�ciently assign protein models we described several heuristics for the PMA problem.

In particular, we developed two deterministic constructive algorithms, which construct

assignments starting from an initially empty assignment�the greedy assignment com-

position and the naïve heuristics. Furthermore, we adapted three distinct improvement

heuristics�Hill-Climbing, Simulated Annealing (SA), and a Genetic Algorithm (GA).

These improve upon a currently best (initially random) assignment by repeatedly ap-

plying small changes. Moreover, to improve the performance of these heuristics, we

developed several faster approaches by including domain speci�c knowledge. Finally, we

evaluated the PMA heuristics and algorithmic improvements for various data sets.

69

7 Conclusions and Outlook

We found that, phylogenies can signi�cantly di�er depending on the applied PMA.

Thus, we say that PMA matters. Moreover, the naïve heuristics resolve non-optimal as-

signments for some data. To provide a guidance on when PMA is particularly important

we conducted experiments on synthetic data to assess the impact of the partition num-

ber. We could, however, not reveal a relationship for our synthetic data sets. Therefore,

it must be assumed, that PMA can be an important issue for all protein-based multi-gene

phylogenetic inferences.

By comparing the proposed heuristics to random searches we found that GA does

not seem to be appropriate for PMA, because it often returned results of worse quality

than those of a random search. These �ndings may be due to inappropriate parameter

settings, though. However, because there exists an in�nite amount of values for some

GA parameters, it be hard to �nd a parameter con�guration that is suitable.

For the remaining improvement algorithms we showed that omitting full α and

branch length re-optimization signi�cantly accelerates likelihood computations. More-

over, avoiding duplicate assignment evaluations by maintaining a simple unsorted list

for storing already computed scores, is bene�cial. Also seeding the heuristics with good

starting assignments either produces comparable result in less time, or results of better

quality in comparable time. An approximation of the potential of assignments further

accelerates the heuristics.

7.2 Future Work

In this �nal section we describe directions of future work.

First of all, we want to mention that we assume that intensi�cation should be favored

over diversi�cation for PMA heuristics. Therefore, it is promising to further exploit the

clustering approach of Section 5.2. By applying this idea it would become possible to

identify models for speci�c partitions that are likely to yield similar scores. Thereby,

we could more explicitly di�erentiate between intensi�cation and diversi�cation steps.

Overall we suspect that the more problem speci�c knowledge we include the better PMA

heuristics perform.

From a biological point of view, it seems to be valuable to assess extensions of the PMA

problem. As we found that the choice of models is critical w.r.t. resulting phylogenies

under joint branch lengths estimates, it is reasonable to believe that this is also the case

for proportional branches. The PMA problem does not account for distinct mutation

speeds between di�erent genes, though. Proportional branches may be regarded as

70

7 Conclusions and Outlook

a compromise between joint branch length estimation and their estimation on a per-

partition basis. Therefore, it would be valuable to assess the impact of assigning mixed

models under the proportional branch model.

Lastly, we observed long execution times, especially for large data sets. Until now

we exploit only shared memory parallelism for the PMA heuristics. From a technical

point of view it is certainly worth to exploit distributed memory approaches for the

PMA heuristics, to reduce their execution time for large data sets. Some heuristics,

even o�er expensive and predictable loops and are therefore predestined for more coarse

grained parallelism. For instance, the steepest ascent Hill-Climbing algorithm always

evaluates the complete neighborhood before accepting the best neighbor. Therefore,

communication is only necessary to map parts of the neighborhood to worker systems

and for the workers to return the corresponding best assignment.

71

Bibliography

[1] E.H.L. Aarts and P.J.M. Laarhoven. Simulated annealing: an introduction. Statis-

tica Neerlandica, 43(1):31�52, 1989.

[2] F. Abascal, R. Zardoya, and D. Posada. Prottest: selection of best-�t models of

protein evolution. Bioinformatics, 21(9):2104, 2005.

[3] F. Abascal, D. Posada, and R. Zardoya. Mtart: a new model of amino acid replace-

ment for arthropoda. Molecular biology and evolution, 24(1):1�5, 2007.

[4] J. Adachi and M. Hasegawa. Model of amino acid substitution in proteins encoded

by mitochondrial dna. Journal of Molecular Evolution, 42(4):459�468, 1996.

[5] J. Adachi, P.J. Waddell, W. Martin, and M. Hasegawa. Plastid genome phylogeny

and a model of amino acid substitution for proteins encoded by chloroplast dna.

Journal of Molecular Evolution, 50(4):348�358, 2000.

[6] H. Akaike. Information theory and an extension of the maximum likelihood prin-

ciple. In Second international symposium on information theory, volume 1, pages

267�281. Springer Verlag, 1973.

[7] O. Al-Araidah, K.A. Shgair, W. Batayneh, and A. Diabat. E�cient approximation

of melting temperature in simulated annealing algorithms applied to chebyshev

travelling salesman problem. International Journal of Business Performance and

Supply Chain Modelling, 4(2):145�163, 2012.

[8] D.A. Bader, B.M.E. Moret, and L. Vawter. Industrial applications of high-

performance computing for phylogeny reconstruction. In Proc. of SPIE ITCom,

volume 4528, pages 159�168. Citeseer, 2001.

[9] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268�308, 2003.

72

Bibliography

[10] M. Boyer, M.A. Madoui, G. Gimenez, B. La Scola, and D. Raoult. Phylogenetic

and phyletic studies of informational genes in genomes highlight existence of a 4th

domain of life including giant viruses. PLoS One, 5(12):e15530, 2010.

[11] Y. Cao, J. Adachi, A. Janke, S. Pääbo, and M. Hasegawa. Phylogenetic relation-

ships among eutherian orders estimated from inferred sequences of mitochondrial

proteins: instability of a tree based on a single gene. Journal of Molecular Evolution,

39(5):519�527, 1994.

[12] Y. Cao, A. Janke, P.J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada,

S. Pääbo, and M. Hasegawa. Con�ict among individual mitochondrial proteins in

resolving the phylogeny of eutherian orders. Journal of Molecular Evolution, 47(3):

307�322, 1998.

[13] L.L. Cavalli-Sforza and A.W.F. Edwards. Phylogenetic analysis. models and esti-

mation procedures. American journal of human genetics, 19(3 Pt 1):233, 1967.

[14] V. �ern�y. Thermodynamical approach to the traveling salesman problem: An

e�cient simulation algorithm. Journal of optimization theory and applications, 45

(1):41�51, 1985.

[15] A. Cornish-Bowden. Nomenclature for incompletely speci�ed bases in nucleic acid

sequences: recommendations 1984. Nucleic acids research, 13(9):3021, 1985.

[16] C. Cotta, E.G. Talbi, and E. Alba. Parallel hybrid metaheuristics. Parallel Meta-

heuristics, pages 347�370, 2005.

[17] D. Cuong, G. Olivier, and L. Vinh. Flu, an amino acid substitution model for

in�uenza proteins. BMC Evolutionary Biology, 10, 2010.

[18] D. Darriba, G.L. Taboada, R. Doallo, and D. Posada. Prottest 3: fast selection of

best-�t models of protein evolution. Bioinformatics, 27(8):1164, 2011.

[19] C. Darwin. On the origin of species by means of natural selection london. J. Murray,

1859.

[20] M.O. Dayho� and R.M. Schwartz. A model of evolutionary change in proteins. In

In Atlas of protein sequence and structure. Citeseer, 1978.

[21] A. de Queiroz and J. Gatesy. The supermatrix approach to systematics. Trends in

Ecology & Evolution, 22(1):34�41, 2007.

73

Bibliography

[22] M.W. Dimmic, J.S. Rest, D.P. Mindell, and R.A. Goldstein. rtrev: an amino acid

substitution matrix for inference of retrovirus and reverse transcriptase phylogeny.

Journal of Molecular Evolution, 55(1):65�73, 2002.

[23] A.W.F. Edwards and C.L.L. Sforza. The reconstruction of evolution. Heredity, 18,

1963.

[24] B. Everitt, A. Skrondal, and Inc Books24x7. The Cambridge dictionary of statistics,

volume 4. Cambridge University Press Cambridge, 2002.

[25] J. Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood ap-

proach. Journal of molecular evolution, 17(6):368�376, 1981.

[26] J. Felsenstein and G.A. Churchill. A hidden markov model approach to variation

among sites in rate of evolution. Molecular Biology and Evolution, 13(1):93�104,

1996.

[27] W. Fletcher and Z. Yang. Indelible: a �exible simulator of biological sequence

evolution. Molecular biology and evolution, 26(8):1879�1888, 2009.

[28] O. Gascuel. Bionj: an improved version of the nj algorithm based on a simple model

of sequence data. Molecular biology and evolution, 14(7):685�695, 1997.

[29] Duncan Graham-Rowe. Usb stick can sequence dna in seconds. New Scientist, 213

(2853):2, 2012.

[30] R.W. Hamming. Error detecting and error correcting codes. Bell System Technical

Journal, 29(2):147�160, 1950.

[31] M. Hasegawa and S. Horai. Time of the deepest root for polymorphism in human

mitochondrial dna. Journal of molecular evolution, 32(1):37�42, 1991.

[32] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape splitting by a

molecular clock of mitochondrial dna. Journal of molecular evolution, 22(2):160�

174, 1985.

[33] R.L. Haupt, S.E. Haupt, and J. Wiley. Practical genetic algorithms. Wiley Online

Library, 2004.

[34] S. Heniko� and J.G. Heniko�. Amino acid substitution matrices from protein blocks.

Proceedings of the National Academy of Sciences, 89(22):10915, 1992.

74

Bibliography

[35] J.P. Huelsenbeck and K.A. Crandall. Phylogeny estimation and hypothesis testing

using maximum likelihood. Annual Review of Ecology and Systematics, pages 437�

466, 1997.

[36] J.P. Huelsenbeck, P. Joyce, C. Lakner, and F. Ronquist. Bayesian analysis of

amino acid substitution models. Philosophical Transactions of the Royal Society B:

Biological Sciences, 363(1512):3941�3953, 2008.

[37] D.T. Jones, W.R. Taylor, and J.M. Thornton. The rapid generation of mutation

data matrices from protein sequences. Computer applications in the biosciences:

CABIOS, 8(3):275, 1992.

[38] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In M. N. Munro,

editor, Mammalian protein metabolism, volume III, pages 21�132. Academic Press,

N. Y., 1969.

[39] T. Keane, C. Creevey, M. Pentony, T. Naughton, and J. Mclnerney. Assessment

of methods for amino acid matrix selection and their use on empirical data shows

that ad hoc assumptions for choice of matrix are not justi�ed. BMC evolutionary

biology, 6(1):29, 2006.

[40] S.A. Kelchner and M.A. Thomas. Model use in phylogenetics: nine key questions.

Trends in Ecology & Evolution, 22(2):87�94, 2007.

[41] B. King. Step-wise clustering procedures. Journal of the American Statistical

Association, pages 86�101, 1967.

[42] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.

science, 220(4598):671, 1983.

[43] C. Kosiol and N. Goldman. Di�erent versions of the dayho� rate matrix. Molecular

Biology and Evolution, 22(2):193�199, 2005.

[44] S.Q. Le and O. Gascuel. An improved general amino acid replacement matrix.

Molecular biology and evolution, 25(7):1307�1320, 2008.

[45] W.L.S. Li and A.G. Rodrigo. Covariation of branch lengths in phylogenies of func-

tionally related genes. PloS one, 4(12):e8487, 2009.

[46] P. Lio and N. Goldman. Models of molecular evolution and phylogeny. Genome

research, 8(12):1233�1244, 1998.

75

Bibliography

[47] M. Lundy and A. Mees. Convergence of an annealing algorithm. Mathematical

programming, 34(1):111�124, 1986.

[48] K. Meusemann, B.M. von Reumont, S. Simon, F. Roeding, S. Strauss, P. Kück,

I. Ebersberger, M. Walzl, G. Pass, S. Breuers, et al. A phylogenomic approach to

resolve the arthropod tree of life. Molecular biology and evolution, 27(11):2451�

2464, 2010.

[49] T. Müller and M. Vingron. Modeling amino acid replacement. Journal of Compu-

tational Biology, 7(6):761�776, 2000.

[50] S.B. Needleman, C.D. Wunsch, et al. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular

biology, 48(3):443�453, 1970.

[51] D.C. Nickle, L. Heath, M.A. Jensen, P.B. Gilbert, J.I. Mullins, and S.L.K. Pond.

Hiv-speci�c probabilistic models of protein evolution. PLoS One, 2(6):e503, 2007.

[52] M. Nirenberg, P. Leder, M. Bern�eld, R. Brimacombe, J. Trupin, F. Rottman, and

C. O'Neal. Rna codewords and protein synthesis, vii. on the general nature of the

rna code. Proceedings of the National Academy of Sciences of the United States of

America, 53(5):1161, 1965.

[53] S. Pääbo et al. The mosaic that is our genome. Nature, 421(6921):409�412, 2003.

[54] H. Pearson. Genetics: what is a gene? Nature, 441(7092):398�401, 2006.

[55] Jonathan Pevsner. Bioinformatics and functional genomics. Wiley-Blackwell,

Hoboken, NJ, 2. ed. edition, 2009. ISBN 978-0-470-08585-1. Includes bibliographical

references and index.

[56] D. Posada and T.R. Buckley. Model selection and model averaging in phylogenetics:

advantages of akaike information criterion and bayesian approaches over likelihood

ratio tests. Systematic Biology, 53(5):793, 2004.

[57] D. Posada and K.A. Crandall. Modeltest: testing the model of dna substitution.

Bioinformatics, 14(9):817�818, 1998.

[58] D. Posada and K.A. Crandall. Selecting the best-�t model of nucleotide substitu-

tion. Systematic Biology, 50(4):580, 2001.

76

Bibliography

[59] T. Pupko, D. Huchon, Y. Cao, N. Okada, and M. Hasegawa. Combining multiple

data sets in a likelihood analysis: which models are the best? Molecular biology

and evolution, 19(12):2294, 2002.

[60] A. Purvis. A composite estimate of primate phylogeny. Philosophical Transactions

of the Royal Society of London. B: Biological Sciences, 348(1326):405, 1995.

[61] S. Rana, A.E. Howe, L.D. Whitley, and K. Mathias. Comparing heuristic, evolu-

tionary and local search approaches to scheduling. In Third Arti�cial Intelligence

Plannings Systems Conference (AIPS-96). Citeseer, 1996.

[62] R.L. Rardin and R. Uzsoy. Experimental evaluation of heuristic optimization algo-

rithms: A tutorial. Journal of Heuristics, 7(3):261�304, 2001.

[63] J.H. Reeves. Heterogeneity in the substitution process of amino acid sites of proteins

coded for by mitochondrial dna. Journal of molecular evolution, 35(1):17�31, 1992.

[64] S. Renaud, P. Chevret, and J. Michaux. Morphological vs. molecular evolution:

ecology and phylogeny both shape the mandible of rodents. Zoologica Scripta, 36

(5):525�535, 2007.

[65] J. Ripplinger and J. Sullivan. Does choice in model selection a�ect maximum

likelihood analysis? Systematic Biology, 57(1):76�85, 2008.

[66] DF Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical

Biosciences, 53(1-2):131�147, 1981.

[67] O. Rota-Stabelli, Z. Yang, and M.J. Telford. Mtzoa: A general mitochondrial amino

acid substitutions model for animal evolutionary studies. Molecular phylogenetics

and evolution, 52(1):268, 2009.

[68] P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20:53�65,

1987.

[69] G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):

461�464, 1978.

[70] J. Shallit. What this country needs is an 18¢ piece. Mathematical Intelligencer, 25

(2):20�23, 2003.

77

Bibliography

[71] A. Stamatakis. Distributed and parallel algorithms and systems for inference of huge

phylogenetic trees based on the maximum likelihood method. PhD thesis, Technische

Universität München, Universitätsbibliothek, 2004.

[72] A. Stamatakis, T. Ludwig, and H. Meier. Raxml-iii: a fast program for maximum

likelihood-based inference of large phylogenetic trees. Bioinformatics, 21(4):456,

2005.

[73] A. Stamatakis, P. Hoover, and J. Rougemont. A rapid bootstrap algorithm for the

raxml web servers. Systematic biology, 57(5):758�771, 2008.

[74] A. Stamatakis, A.J. Aberer, C. Goll, S.A. Smith, S.A. Berger, and F. Izquierdo-

Carrasco. Raxml-light: A tool for computing terabyte phylogenies. Exelixis-RRDR,

3, 2012.

[75] A.S. Tanabe. Kakusan: a computer program to automate the selection of a nu-

cleotide substitution model and the con�guration of a mixed model on multilocus

data. Molecular Ecology Notes, 7(6):962�964, 2007.

[76] A.S. Tanabe. Kakusan4 and aminosan: two programs for comparing nonpartitioned,

proportional and separate models for combined molecular phylogenetic analyses of

multilocus sequence data. Molecular Ecology Resources, 2011.

[77] S. Veerassamy, A. Smith, and E.R.M. Tillier. A transition probability model for

amino acid substitutions from blocks. Journal of Computational Biology, 10(6):

997�1010, 2003.

[78] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal

of computational biology, 1(4):337�348, 1994.

[79] S. Whelan and N. Goldman. A general empirical model of protein evolution derived

from multiple protein families using a maximum-likelihood approach. Molecular

Biology and Evolution, 18(5):691�699, 2001.

[80] C.R. Woese and G.E. Fox. Phylogenetic structure of the prokaryotic domain: the

primary kingdoms. Proceedings of the National Academy of Sciences, 74(11):5088,

1977.

[81] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. Evo-

lutionary Computation, IEEE Transactions on, 1(1):67�82, 1997.

78

Bibliography

[82] Z. Yang. Maximum-likelihood estimation of phylogeny from dna sequences when

substitution rates di�er over sites. Molecular Biology and Evolution, 10(6):1396�

1401, 1993.

[83] Z. Yang. Computational molecular evolution. Oxford University Press, USA, 2006.

[84] Z. Yang and B. Rannala. Bayesian phylogenetic inference using dna sequences: a

markov chain monte carlo method. Molecular Biology and Evolution, 14(7):717�724,

1997.

[85] N. Yutin, P. Puigbò, E.V. Koonin, and Y.I. Wolf. Phylogenomics of prokaryotic

ribosomal proteins. PloS one, 7(5):e36972, 2012.

[86] G. Zapfel, G. Zäpfel, R. Braune, and M. Bögl. Metaheuristic Search Concepts: A

Tutorial with Applications to Production and Logistics. Springer Verlag, 2010.

79

	1 Introduction
	1.1 Context and Motivation
	1.2 Challenges
	1.3 Contribution
	1.4 Structure of the Thesis

	2 Computational Molecular Phylogenetics
	2.1 Principles
	2.2 Multiple Sequence Alignment
	2.3 Phylogenetic Inference
	2.3.1 Tree-Space
	2.3.2 Conceptual Models
	2.3.3 Heuristic Tree-Search

	2.4 Models of Evolution
	2.4.1 Transition-Probability Matrix
	2.4.2 Mechanistic vs. Empirical Models
	2.4.3 Common Protein Models
	2.4.4 Model Derivates

	3 Multi-Gene Model Selection
	3.1 Related Work and Objectives
	3.2 Protein Model Assignment

	4 Algorithmic Approaches
	4.1 Objectives and Overview
	4.2 PMA Heuristics
	4.2.1 Naïve Heuristics
	4.2.2 Greedy Assignment Composition
	4.2.3 Hill-Climbing
	4.2.4 Simulated Annealing
	4.2.5 Genetic Algorithm

	5 Improving Performance
	5.1 Seeding and Pipelining
	5.2 Search-Space Reduction by Model Clustering
	5.3 Reducing Assignment Evaluation Costs
	5.3.1 Lazy Likelihood Computations
	5.3.2 Approximate Assignment Scoring

	6 Experimental Setup and Results
	6.1 Preliminaries
	6.2 Key Questions
	6.3 Results
	6.3.1 Importance of Protein Model Assignment
	6.3.2 Parameter Setting
	6.3.3 Suitability of Basic Heuristics
	6.3.4 Effect of Algorithmic Improvements
	6.3.5 Performance Evaluation

	7 Conclusions and Outlook
	7.1 Summary and Conclusions
	7.2 Future Work

	Bibliography

