
Analysis of human tissue-specific
protein-protein interaction networks

Master thesis
of

Patrick Flick
at the Faculty of Computer Science

Primary reviewer: Prof. Dr. Alexandros Stamatakis
Secondary reviewer: Juniorprof. Dr. Henning Meyerhenke
Advisors: Dr. Tomas Flouri

Francesco Gatto

Bearbeitungszeit: 15. November 2013– 14. Mai 2014

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu





Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, May 14, 2014



iv



Abstract

Proteins are the core machinery of all living cells and protein interactions deter-
mine the inner workings of life itself. Insights into the nature of these interactions
are important for learning about how and why cells work. The interactions be-
tween all proteins in a cell compose a so-called protein-protein interaction (PPI)
network, in form of a graph. Not all proteins are present in all cell and tissue
types, hence protein interactions are restricted to cell and tissue types where both
interacting proteins exist. These tissue dependent interactions form tissue-specific
PPI (TSPPI) networks.

In this thesis, we construct and analyze TSPPI networks from different data
sources. We follow the goal to gain insights into the structure of interactions as
well as into the properties of specific groups of proteins inside the TSPPI net-
works. To that end, we implement an analysis pipeline and develop efficient anal-
ysis algorithms, which operate on our graph representation for TSPPI networks.
Moreover, we study the basic properties of TSPPI networks and investigate prop-
erties of certain classes of proteins. Then, we provide a method to identify proteins
which gain in importance by cellular specialization. Furthermore, we re-evaluate
prior research results on a large set of TSPPIs and demonstrate that some previ-
ous conclusions have to be reconsidered. Finally, we employ clustering algorithms
with the objective to identify tissue-specific functional modules within TSPPIs. In
addition to using available clustering methods, we pursue two more approaches.
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Chapter 1

Introduction

1.1 Thesis structure
In this Chapter, we introduce the background and common terms and concepts
used throughout this thesis. First, we explain the biological basics of protein-
protein interaction networks and tissue specific expression patterns. We then in-
troduce concepts from graph theory and complex network analysis.

Chapter 2 summarizes related work and prior research on the analysis of
tissue-specific protein-protein interaction networks. Additionally, we coarsely lay
out the differences between the various data sources, which we make use of in this
thesis.

In Chapter 3 we explain our analysis pipeline, the basic properties of the
datasets used, and the algorithms that we developed and implemented.

Next, we briefly describe the implementation of our analysis pipeline in Chap-
ter 4.

In Chapter 5 we then evaluate the performance of our algorithms. Further-
more, we explain the analysis performed on the tissue-specific interaction net-
works and show the results obtained.

Finally, in Chapter 6 we summarize our work, draw conclusions and outline
possible future work.

1.2 Biological background
This section is primarily designed for readers without a biological background.
We will shortly explain the important biological terms and concepts needed for
this thesis. If you feel confident with the concept of proteins and protein-protein
interactions, you may skip the following few sections and continue with section
1.2.5.
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6 CHAPTER 1. INTRODUCTION

First of all, in Section 1.2.1 we define the term protein and discuss how pro-
teins relate to DNA, mRNA, and genes. Next in Section 1.2.2, we explain the
concept of protein-protein interactions and give a few examples. We then de-
scribe how the interactions define a protein-protein interaction network (Section
1.2.3). Furthermore, the concepts of tissue specificity and protein expression are
elaborated in Section 1.2.4, and finally, we explain how these are used to define
tissue-specific protein-protein interaction networks (Section 1.2.5).

1.2.1 Proteins
Proteins are large macromolecules which can perform a variety of biological and
chemical functions. They are the core machinery of all living cells and are respon-
sible for DNA replication, signaling, metabolism, the inner and outer structure of
cells, transporting other proteins and substances throughout the cell, and many
other tasks. All proteins consist of the same basic building blocks called Amino
Acids, only 20 different amino acids make up all proteins. The sequence of these
amino acids is coded for by genes, which are subsequences of the DNA/Genome
of the cell [2].

1.2.2 Protein-protein interactions
In order to fulfill their function, proteins interact with other substances (molecules,
ions, DNA, . . .) or other proteins. Proteins interact in numerous different contexts
and with different outcomes. Some proteins activate or deactivate other proteins
by binding to them or by (de-)phosphorylating them. In the process of phospho-
rylation, a phosphate group is added (or removed) from a protein, which turns the
protein on or off. Other proteins bind to each other, creating so-called protein-
complexes. These have important roles in the entire cell, for instance in DNA
replication. Another class of proteins bind to each other to create structural com-
plexes which give the cell its 3-dimensional structure. Yet other proteins pass on
signals by interacting with source and destination proteins in so-called signaling
pathways. Transcription factors are proteins that bind to DNA to activate the tran-
scription process (i.e., the expression) of a gene. This activation often requires
multiple transcription factors to interact and bind to the DNA together [2].

All of these interactions, including many more, are the central part of the func-
tioning of the cell. Understanding these core interactions is vital to understanding
the inner workings of life itself.

A number of different approaches have been followed towards reconstruct-
ing the interactions between proteins (see 2.1). The literature comprises stud-
ies that demonstrate the presence of single or few interactions. Others use high-
throughput experiments to find if there exist pairwise interactions between a large
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set of query proteins. Yet other studies use computational modeling to determine
which proteins may bind to each other based on their (predicted) structural prop-
erties.

1.2.3 Protein-protein interaction networks

We represent protein-protein interactions as an undirected and unweighted graph
G(V,E), where the set of nodes V are the proteins. An edge (p1, p2) ∈ E is
present iff there is an interaction between the two proteins p1 and p2.

Since there are multiple sources for protein interactions from different studies
and databases, there are also different graphs representing the interactions found
in these studies.

Such a graph, representing protein-protein interactions, is commonly called a
protein-protein interaction network, or PPI network for short.

1.2.4 Protein expression and tissue-specificity

Proteins are created from genes in a process called gene expression. In this pro-
cess, initially genes are transcribed from the DNA into short RNA sequences
called mRNA (messenger RNA). The mRNA sequence is then translated into amino
acid sequences, which then fold up to form proteins.

There is a variety of different factors that influence, whether or not, a gene is
transcribed in the first place. If a gene is not transcribed or not translated, it is
non-expressed. In this case, the protein will never be created.

The cells in a human (or most other multicellular organism for that matter)
are highly specialized for certain tasks. There are nerve cells, blood cells, muscle
cells, skin cells, liver cells, and numerous other types. However, the underlying
code of the cells in form of the DNA is identical throughout the whole organism.
The different cell types utilize different sets of proteins for their specific function.
In nerve cells for instance, numerous membrane bound receptor proteins (located
on the outer surface of the cell) are expressed. Many of these proteins are not
found in any other cell types.

Henceforth, we will label a protein as expressed or non-expressed simply re-
lating to whether a protein is present in a specific cell or not.

The set of proteins that are expressed varies among cell types and tissues.
Some proteins are expressed only in one or very few cell types, while others are
expressed in a all, or most cell types. The former are called tissue-specific pro-
teins, while the latter are named housekeeping proteins. Examples for housekeep-
ing proteins are proteins that are vital to the survival of the cell, such as DNA
replication proteins or proteins that are active in the core metabolism of the cell.
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Given an ordered set of all proteins, we define the protein expression of a given
tissue or cell type as a binary vector ~et = (et0, et1, . . . , et(n−1)) where eti = 1 iff
protein pi is expressed in tissue t and eti = 0 otherwise.

A variety of different data sources for protein expression in human tissue and
cell types are freely available. The expression data stems from different experi-
mental methodologies. The protein expression can be measured directly, or indi-
rectly, by measuring the mRNA abundance. The mRNA abundance can be mea-
sured using DNA arrays or by sequencing RNA (RNAseq) using next generation
sequencing platforms (see Section 2.2 for details). Protein expression can be di-
rectly measured by using antibody essays [61]. This method however requires
extensive manual annotations, which are not required for neither RNA based ex-
pression data from DNA arrays nor RNAseq.

A drawback of mRNA based expression data is, that mRNA abundance is not
always highly correlated with protein abundance [31].

1.2.5 Tissue-specific PPIs

A tissue specific protein-protein interaction network (TSPPI) is defined as the
subgraph of a protein-protein interaction network that contains only proteins that
are expressed in a specific tissue [10] [17].

Given the graph G(V,E) of a PPI network and an expression vector ~et for a
tissue t, we construct the according tissue specific PPI network by creating a sub-
graph Gt(Vt, Et) of G, which only contains expressed proteins as nodes. Hence:

Vt = {p ∈ V |etp = 1} (1.1)

and
Et = {(pi, pj) ∈ E|etpi = 1 ∧ etpj = 1} (1.2)

In order to construct a TSPPI, we therefore need a PPI network as a template
and expression data for each protein. Since an expression dataset provides protein
expression data for multiple tissues, we can construct multiple TSPPIs (one per
tissue) for each PPI and expression dataset.

1.3 Complex networks

We will shortly introduce random graphs and scale-free graphs in this section,
since PPI networks closely resemble such graphs. Note that throughout this work,
we will use graphs and networks as synonyms.
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1.3.1 Random graphs
Random graphs were introduced independently by Erdös & Rényi (1959) [23] and
by Gilbert (1959) [27]. In Gilbert’s model, a random graph is defined as G(n, p),
where n is the number of nodes in the graph and p is the probability of any possible
edge to exist. Since there are a total of n(n−1)

2
possible edges in a graph with n

nodes, the random graph G(n, p) has an expected number of

〈m〉 = E[m] = p · n(n− 1)

2
(1.3)

edges.
The degree distribution P (k) of a random graph is defined as the probability

distribution over the degrees of the graph’s nodes. Similarly, the degree distribu-
tion P (k) of an actual instance of a graph is given by the fraction of nodes having
degree k. The degree distribution of the G(n, p) random graph model is given by
the binomial distribution:

P (k) = P[deg(v) = k] =

(
n− 1

k

)
pk(1− p)n−1−k (1.4)

for any node v [9].
To fit the degree distribution of an instance of a graph G(n,m) by a binomial

degree distribution, the edge probability p is estimated as:

p =
2m

n(n− 1)
(1.5)

Exponential degree distribution Some graphs follow an exponential degree
distribution [26], whose degree distribution is given by the exponential distribu-
tion [24], [45]:

P (k) = λe−λk (1.6)

where λ is estimated by λ̂ = 1
k̄

and k̄ is the average degree.

1.3.2 Scale-free graphs
A multitude of real world graphs are not random graphs as discussed above. In
fact, so-called scale-free networks are common. These graphs include the world
wide web, science collaboration networks, phone call networks, and others [1].

Scale-free networks are defined by their degree distribution, which in contrast
to random networks follows a power-law distribution [4]:

P (k) ∼ k−α (1.7)
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If normalized for degrees starting from one, this yields:

P (k) = (α− 1)k−α (1.8)

To fit a power-law distribution to an observed degree distribution, the α pa-
rameter is estimated using a Maximum Likelihood Estimator.

As we will see later (Section 3.3), protein-protein interaction (PPI) networks
also exhibit a power-law distribution and can thus be classified as complex net-
works with scale-free properties.

The numerous high degree nodes in scale-free graphs are called hubs [5].
These play a central role in the networks and are inherent to the scale-free model.

1.3.3 Graph properties
Besides obvious graph properties, such as the number of nodes, edges and the
interaction degrees as well as the degree distribution, we are also going to look at
topological properties of graphs. We will introduce those below.

Clustering Coefficient

A clustering coefficient measures to which degree the local neighborhood of nodes
is inter-connected, thus how much nodes tend to cluster together.

The local clustering coefficient measures this in terms of triangles. For each
node u, its local clustering coefficient is defined as:

Cu =
2Lu

deg(u)(deg(u)− 1)
(1.9)

where Tu is the number of triangles at u, i.e., the number of combinations of
neighbors v and w of u for which an edge {v, w} exists in the graph.

The global clustering coefficient can be defined in different ways. One com-
mon definition is:

C =
number of closed triplets

number of triplets
(1.10)

where a triplet consists of three nodes that are connected by at least two edges. If
all three nodes are connected by a total of three edges, the triplet is called closed.
Another definition of a global clustering coefficient is the average local clustering
coefficient over all nodes, hence:

C =

∑
u∈V Cu

|V |
(1.11)
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Centrality

A centrality measure of a node in a network is a number representing the impor-
tance of that node in the network. This could imply many things and a variety of
different centrality measures have been proposed.

The degree centrality of a node is equivalent to its degree in the graph. In
this thesis, we analyze the degree distributions and degree centralities of different
classes of proteins in PPI networks.

The betweenness centrality of a node u is defined relative to the number of
shortest paths that pass through this node. More specifically, the betweenness
centrality is given by:

g(u) =
∑
s 6=u6=t

σst(u)

σst
(1.12)

where σst is the number of shortest paths from s to t and σst(u) is the number
of shortest paths from s to t passing through the node u. In a PPI network, a
node with a high betweenness centrality can be interpreted either as a bottleneck
in protein signaling pathways or as a protein which is involved in many different
pathways. This is why we consider such a protein as important in PPI networks.

The closeness centrality of a node is a measure of the distances from this node
to all other nodes. There are relatively short paths to all other nodes from a node
with a high closeness centrality. We consider this measure to be less meaningful
for a protein in a PPI graph compared to the betweenness centrality. We deem
the number of pathways in which a protein is involved in (i.e., the betweenness
centrality) more important than the distances to other proteins.

The eigenvector centrality is yet another centrality measure. For this method,
the centralities of the nodes are the values of the eigenvector for the biggest eigen-
value of the adjacency matrix of the graph. We consider the eigenvector centrality
to be less interpretable in PPI networks.

In our analysis of PPI and TSPPI networks, we therefore focus mainly on the
degree and betweenness centralities.
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Chapter 2

Related work and data sources

2.1 Protein-protein interaction networks
In this Section we will shortly describe the different protein-protein interaction
(PPI) networks that are used for our analysis and the experimental methodologies
used to obtain them.

2.1.1 Yeast two-hybrid

Figure 2.1: The Yeast two-hybrid method: a) original state (no Y2H screening), b) A and
B do not interact in Y2H screening, c) A and B do interact in Y2H screening.

Yeast two-hybrid (Y2H) screening is a method used for finding if two proteins
interact within a yeast cell. Initially, an artificial, circular DNA segment called a
plasmid is inserted into a yeast cell. The plasmid contains multiple genes, includ-
ing the two query genes A and B (also called the prey and bait), which are tested
for interaction. We depict the Y2H method in Figure 2.1. Additionally, there is
a reporter gene R and a combined transcription factor T − D. If this factor is
available in this form, the D part will bind to the DNA close to the reporter gene
R and the T part will promote transcription (see part (a) in Figure 2.1). Thus, the
reporter gene R will be expressed and can be measured. However, if T and D are
not connected, then R will not be expressed. In the artificial plasmid the gene for

13
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T −D is split and combined with A and B as: T −A and B−D. Now only if the
proteins A and B interact, the complex T −A−B−D will form and the reporter
gene R can be expressed (c). If A and B do not interact, then R is not expressed
(b). The reporter gene R is selected in a way that facilitates measuring of R [40].

The group at the Center for Cancer Systems Biology (CCSB) of the Dana-
Farber Cancer Institute has created a PPI network by using high-throughput Y2H
screening [53] [63] [64]. For the newest release, they have run Y2H experiments
on 13, 000 genes testing for all possible interactions. Of this 13, 000 × 13, 000
matrix, they found a total of approximately 14, 000 interactions. This PPI network
is referred to as the Human Interactome 2012. From here on, we will refer to this
network as the CCSB HI-2012 or simply as HI-2012.

2.1.2 Protein complexes

A protein complex consists of multiple proteins that bind together into a single
entity. These commonly occur in the cell and perform various tasks (see Section
1.2.2). The proteins in such a complex are represented as a densely connected
clique in the PPI graph.

Havugimana et al. (2012) [32] extracted and purified protein complexes from
human cells. Then, they fragmented the protein complexes and used mass spec-
trometry to identify the proteins in each complex. The resulting PPI network
consists of many densely connected clusters with few links in between them.

Throughout this work, we will refer to this network by the name of the first
author or as the protein complexes network.

2.1.3 Literature curated PPIs

There are various research groups that curate databases of protein-protein inter-
actions published in the peer-reviewed literature. The IMEx consortium orga-
nizes these groups by providing a set of standards for curation, annotation, and
publication of protein-protein interactions [47]. The PPI databases that are part
of the IMEx consortium are DIP [55], IntACT [33], MINT [65], I2D [12], Ma-
trixDB [16], MBInfo [46], UniProt [20], MPIDB [28], and InnateDB [42].

All these databases can be easily accessed through PSICQUIC (Proteomics
Standards Initiative common query interface) interfaces [3]. In this thesis, we
combine all those networks into one PPI network. We will henceforth refer to this
network as IMEx PSICQUIC or IMEx.
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2.1.4 Composite PPI networks
Another approach that is taken, is to combine the protein-protein interactions from
multiple sources and experiments into one large PPI network and score the edges
using some quality score. This approach is taken for instance by the STRING [25]
and HIPPIE [56] PPI networks. Here, we use the STRING PPI network, since this
networks is more established in the scientific community.

Bossi and Lehner (2009) created their own composite network by combining
several sources into one joint PPI network [10]. Since we are re-evaluating their
results in this thesis (see Section 5.2.1), we will also be using their PPI network
throughout our analyses. We will refer to this network by the name of the first
author: Bossi.

2.2 Protein expression
There are two fundamentally different approaches to quantify protein expression.
One approach measures the messenger RNA (mRNA) transcribed from the genes.
The alternative method is to measure protein abundance directly.

More high-throughput studies measuring mRNA compared to measuring pro-
tein abundance have been performed, although mRNA abundance does not always
correlate highly with protein abundance [31].

We will now shortly describe the different expression data sources that we use
in this thesis.

2.2.1 DNA microarray chips
DNA microarray chips are used to measure mRNA abundance. To do so, the
mRNA of the cell is first transcribed into complementary DNA fragments. The
microarray chip’s surface has oligonucleotide DNA probes attached to it, to which
the sample DNA fragments bind. Each gene has an associated region on the chip.
The mRNA abundance of different genes is then measured by the quantity of DNA
fragments binding to each part of the chip.

Su et al. (2004) [59] used DNA microarrays for a high-throughput study of
the expression of human genes in over 80 different tissues and cell-types. We will
refer to this expression dataset by its name, Gene Atlas, from here on.

2.2.2 RNA sequencing
Another method to measure mRNA abundance is to use next-generation sequenc-
ing (NGS) to directly sequence the mRNA. The sequenced reads are mapped to
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the genome and the number of reads mapping to each protein-coding gene are
counted. This count is then normalized into a metric called RPKM (reads per
kilobase per million).

In this thesis, we use the data from two studies which have sequenced mRNA
and provided normalized expression. Krupp et al. (2012) [37] created the RNAseq
Atlas which provides normalized mRNA expression for 11 different tissues. The
RNAseq data for their database originates from a study by Castle et al. (2010)
[14]. The second source of RNAseq data is the Illumina Body Map 2.0 provided
by the European Bioinformatics Institute (EBI) on ArrayExpress [54], which is a
public database of experimental results in functional genomics. The Body Map
provides normalized mRNA expression data for a total of 16 human tissues.

2.2.3 Antibody annotation
Uhlen et al. (2005, 2010) [61] [62] performed a high-throughput antibody es-
say for over 15,000 human proteins and over 80 different cell- and tissue-types.
For each protein, one or more antibodies are used to determine whether the pro-
tein is present in a cell or not. For each cell- and tissue-type and antibody es-
say, microscopy images are evaluated and annotated by domain experts. The ob-
served protein expression is categorized into four categories: “None”, “Low”,
“Medium”, and “High” and then further classified into four levels of reliability
based on antibody specificity, conflicting results and previously published results
in the peer-reviewed literature. The resulting database is called the Human Protein
Atlas (HPA) and freely available via the WWW.

We use this expression database in our analysis, but only use those expres-
sion values which are annotated by either “Medium” or “High” reliability. We
will refer to this dataset as HPA. A large fraction of expression values is still an-
notated as unreliable, hence the HPA expression dataset is considerably smaller
than the mRNA based datasets (see also Section 3.2). We will therefore also con-
duct analyses using the whole Human Protein Atlas database (without filtering for
reliability). We denote this dataset as HPA All from here on.

2.3 Tissue-specific PPI networks
Since the release of the Gene Atlas data by Su et al. (2004) [59] a number of
different research results on the analysis of tissue-specific interaction networks
have been published. In the following, we will summarize those that are most
relevant to our research.

Bossi and Lehner (2009) [10] created a tissue-specific PPI network, by com-
bining a number of different PPI networks and annotating the proteins with ex-



2.3. TISSUE-SPECIFIC PPI NETWORKS 17

pression data from the Gene Atlas. They then analyzed their tissue-specific PPI
network, with particular emphasis on the network properties of tissue-specific as
well as housekeeping proteins. We reproduce a substantial fraction of their analy-
ses and show that their results remain valid only for some, not all, of the PPI and
expression datasets (see Section 5.2.1).

Emig and Albrecht (2011) [21] and Emig et al. (2011) [22] re-evaluated some
results from Bossi and Lehner [10] using RNAseq instead of Gene Atlas expres-
sion data. They observed that RNAseq expression data shows that many more
proteins are universally expressed than when considering expression data from
the Gene Atlas. They also show that, some results from Bossi and Lehner do not
hold when considering RNAseq data. We will re-evaluate the results from these
studies systematically for multiple PPI networks and multiple expression datasets.

Lopes et al. (2011) analyzed the characteristics of PPI networks [41]. They
calculated various network statistics such as the average betweenness, the cluster-
ing coefficient, diameter, average shortest paths, and others and concluded that all
PPI networks they analyzed are topologically similar. They further constructed
tissue-specific PPIs and noted that these are considerably smaller than the whole
PPI networks (1% − 25%). They used the tissue-specific PPI networks to show
that proteins related to viral infections and responses show better functional en-
richment in the tissue-specific PPIs than they do in the whole PPIs.

Functional enrichment analysis is a method to score the similarity of a set of
genes. To that end, genes are annotated with terms describing their biological
function. One possible annotation scheme are Gene-Ontology terms, which we
will describe in more detail in Section 3.6. The similarity of genes is then deter-
mined from the similarity of the terms, which the genes are annotated by. The
functional enrichment score for a set of genes reflects the similarity of the query
genes in contrast to a background population of genes. Refer to Section 3.6 for
more details.

Lin et al. (2009) [39] constructed tissue-specific PPIs using the Human Protein
Reference Database (HPRD) for protein interactions. Their analysis demonstrates
that, housekeeping proteins exhibit higher interaction degrees and higher between-
ness centralities than randomly selected nodes inside the tissue-specific networks.
However, most of their results are not statistically significant. The higher inter-
action degree of housekeeping proteins was also shown by Bossi and Lehner (see
above).

Barshir et al. (2013) published the TissueNet database of tissue-specific protein-
protein interactions in humans [6], which integrates a collection of PPI networks
with three expression datasets. These are the same expression datasets that are
used within this work: the Gene Atlas [59], the Human Protein Atlas [61] and the
Illumina Body Map RNAseq data. The TissueNet database is provided through a
web-interface, which can be queried for protein identifiers. It will then return all
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interaction partners with annotations for each tissue. This local neighborhood is
rendered into a visual graph representation. However, Bashir et al. do not provide
any detailed analyses of graph properties of their integrated network.

2.4 Graph analysis and clustering
The NetworKit toolkit by Staudt et al. (2014) [58] implements multiple graph
analysis and clustering algorithms for parallel shared-memory systems. They pro-
vide novel parallelizations approaches of established clustering algorithms and
use OpenMP thread-based parallelism for the implementation.

OpenMP (Open Multi-Processing) is a standardized interface for shared-memory
multiprocessing, which provides compiler directives for parallelization and syn-
chronization of code sections and loops. OpenMP uses thread based parallelism
and supports the languages C/C++ and FORTRAN.

For graph analysis, the NetworKit implements algorithms to determine the ex-
act and approximate local and global clustering coefficients, and a collection of
different centrality methods, including the betweenness centrality. The between-
ness centrality is computed using Brandes’ algorithm [11], which is a sequential
method based on breadth-first search (BFS) and runs in O(m · n) in unweighted
graphs where n is the number of nodes and m is the number of edges.

Furthermore, the authors of the NetworKit toolkit provide parallel cluster-
ing algorithms, among which are the parallel label propagation (PLP) algorithm
based on the label propagation method by Raghavan et al. (2007) [49] and the par-
allel Louvain method (PLM) based on the algorithm by Blondel et al. (2008) [8].

We will make use of, and provide modified forms of these algorithms, for our
analysis of tissue-specific protein-protein interaction networks.
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Methods and Datasets

3.1 Data pipeline
To ensure easy reproducibility of all results, we implemented an automated anal-
ysis pipeline. The input to this pipeline are the data files in the form they were
downloaded from the various sources. The data pipeline then processes the data by
transforming itto a common format and then executes all analyses on all datasets.
In this section, we will describe the different processing steps, i.e., the stages of
the pipeline.

The protein-protein interaction networks and the expression data sets are pub-
lished in different formats. The first steps of the automated analysis are therefore
to import all the data into a unified database and transform it into a common,
shared representation.

The stages for importing and processing a protein-protein interaction network
are roughly the following:

1. Import raw file into the SQL database

2. (optional) Filter edges by their reliability

3. Map gene identifiers into a common gene identifier system

4. Normalize tables and graphs into the common representation

Analogously, the tissue expression datasets are imported and processed into a
common format using the following steps:

1. Import the raw file into the SQL database

2. Filter unreliable or empty data points

3. Map gene identifiers into a common gene identifier system

19
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4. Normalize the table into the common format

5. Remove/merge duplicates

6. Classifying expression values into expressed or non-expressed

In the following we will describe some of these steps in more detail.

3.1.1 Common data format
In order to jointly analyze and combine data sets, we first define a common repre-
sentation for PPI networks and expression data sets.

Common identifiers We use HGNC (HUGO Gene Nomenclature Committee)
[29] identifiers as common gene identifiers. Some data sets use protein identifiers
(STRING) or transcript identifiers (RNAseq data), which are more specific than
gene identifiers, since one gene can result in different transcript or protein vari-
ants due to splicing. However, most of the data sets use gene identifiers, which can
not be mapped back to the more specific protein or transcript identifiers. There-
fore, we map all identifiers to the more general gene identifiers, at slight loss of
specificity of the data.

PPI networks We represent protein-protein interaction networks as edge lists
of gene identifiers. An edge in a PPI network represents an interaction between
two proteins. Therefore, such a network is an undirected graph. The format of
the STRING network saves each edge twice, once for each orientation. For an
edge {u, v}, we only save one orientation: (min(u, v),max(u, v)), to avoid re-
dundancy.

Expression data Expression datasets contain gene expression levels for genes
in different tissues or cell types. One way to represent this data would be as a
two-dimensional matrix, where one dimension is given by the genes and the other
by the tissues or cell-types. However, because we are using a relational database
in our implementation, we model expression data as a table with one column for
each: the gene identifier, the tissue, and the expression value.

3.1.2 Gene identifier mapping
The different datasets use distinct gene identification systems. Table 3.1 shows
the identifier systems used by the PPI networks and the expression datasets.
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PPI Identfier
Bossi & Lehner Ensembl Gene
CCSB HI-2012 HGNC
Havugimana et al. Uniprot
PSICQUIC IMEx Uniprot
STRING Ensembl Protein
Expression dataset Identfier
Illumina BodyMap Ensembl Gene
GeneAtlas Chip annotation IDs
Human Protein Atlas Ensembl Gene
RNAseq Atlas Entrez & HGNC

Table 3.1: Different gene identifier systems used by the PPIs (top table) and expression
data sets (bottom table).

We choose HGNC (HUGO Gene Nomenclature Committee) [29] gene identi-
fiers to consistently name genes, since this identifier system is well curated and
well established. This identifier system is also referred to as the official gene
names [35].

For mapping most identifiers to HGNC identifiers, we download, import, and
merge two identifier mapping tables: one from BioMart [36] and the other from
the HGNC website at genenames.org.

The merged mapping table is then used to map the identifiers in a dataset from
its identifier system to HGNC gene identifiers. Since the mapping tables do not
guarantee a one-to-one mapping, all duplicates need to be merged.

3.1.3 Merging duplicates

As a result of mapping identifiers from one identifier system to the other, multiple
distinct identifiers can be mapped to a single identifier. This is typically the case
when protein or transcript identifiers are mapped to gene identifiers, since one
gene can give rise to multiple different proteins and transcripts due to alternative
splicing. It is thus not only a technical issue but also biologically relevant.

For PPI networks, this is equivalent to merging multiple distinct vertices into
one. Thus we simply remove duplicate edges after mapping identifiers.

In an expression dataset such duplicates can result in different expression val-
ues associated with a single gene in a single tissue. We merge duplicate expression
values by only keeping the maximum expression value. We argue that, taking the
maximum value is a good choice, since if multiple variants of a gene (e.g., in
form of different splicing variants) are expressed, that gene is expressed at least

http://www.genenames.org/cgi-bin/statistics
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as much as any of it’s variants.

3.1.4 Classifying expression values
Once all data is imported and brought into a common representation, the expres-
sion data is classified into expressed and non-expressed.

The Human Protein Atlas supplies discrete expression levels. For Staining,
these are “Negative”, “Weak”, “Moderate”, and “Strong”, while for APE com-
bined scoring the provided levels are: “None”, “Low”, “Medium”, and “High”.
We classify a gene to be expressed whenever it is not “Negative” or “None”.

For the Gene Atlas expression dataset published by Su et al. [59], we use a
fixed threshold of ≥ 100 to classify a gene as expressed. This threshold value is
also used by the authors of TissueNet [6] and others [66].

For both RNAseq datasets (Illumina Body Map 2.0 and RNAseq Atlas) we use
a fixed threshold of ≥ 1.0 RPKM for classifying a gene as being expressed [6].

Dataset Classification threshold
Gene Atlas >= 100
Human Protein Atlas not "None" nor "Negative"
RNAseq Atlas ≥ 1.0
Illumina Body Map 2.0 ≥ 1.0

Table 3.2: Our classification thresholds for the different expression data sources

In Table 3.2 we show the classification criteria for the different expression
datasets, and Figure 3.1 illustrates the cumulative distribution of expression val-
ues for each expression data set. The plots also show how many gene-tissue com-
binations are classified as non-expressed and expressed for the given thresholds
(blue dotted lines).

The cumulative frequency at the classification threshold value is equal to the
fraction of gene-tissue combinations that are classified as non-expressed. This
number is printed in the plots of Figure 3.1 on the left side of the dotted, horizontal
line. These numbers show, that the thresholds do not necessarily result in the same
fractions of genes classified into expressed and non-expressed. Most notable is
the percentage of gene-tissue combinations classified as non-expressed within the
Gene Atlas data.

3.2 Expression datasets
In this section we will calculate some simple statistics about the different expres-
sion datasets, including the number of genes and tissues and their expression pro-
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Figure 3.1: This figure shows the cumulative distribution of expression values for the four
different expression data sets. The blue dotted lines show the cutoffs, including a percent-
age of how many gene-tissue combinations are classified as non-expressed. The plot for
the Human Protein Atlas uses a simple mapping of “Negative”, “Weak”, “Moderate”, and
“Strong” to the numerical values {0, 1, 2, 3}.

files. Furthermore, we will explain the classification of proteins into housekeeping
and tissue-specific genes.

3.2.1 Basic properties

In Table 3.3, we give the sizes of the expression data sets in terms of the number
of genes and tissues or cell-types covered. The Gene Atlas and the Human Protein
Atlas have data from over 80 different cell-types. The RNAseq datasets are more
restrictive in the number of tissues covered with 11 in the RNAseq Atlas and 16
tissues by the Illumina Body Map. The GeneAtlas and RNAseq Atlas cover most
genes, while the Human Protein Atlas and the Body Map cover only around 75%
of genes. The restricted Human Protein Atlas data, i.e., the subset of the HPA
which is rated as being reliable, is much smaller, with only 3836 genes.
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Dataset Number of Genes Number of Tissues
Gene Atlas 18444 84
Human Protein Atlas 3836 83
Human Protein Atlas all 15061 83
RNAseq Atlas 21399 11
Illumina Body Map 2.0 14404 16

Table 3.3: Sizes of the expression data sets after import and identifier mapping.

3.2.2 Tissue expression

In Figure 3.2, we show the tissue expression for each gene of each expression
dataset. The tissue expression is defined as:

tissue_expression(gene) =
number of tissues where gene is expressed

total number of tissues

The genes in the figures are sorted by their tissue expression values, resulting in a
monotonic graph. We observe that, especially the Gene Atlas, has a more narrow
distribution with many not genes being expressed at all. Note that, the data for
this plot is already using the relaxed threshold of≥ 100 for classifying expression
in the Gene Atlas. The Human Protein Atlas shows more evenly distributed tissue
expression values for all genes. These differences in tissue expression have an
influence when classifying genes into tissue specific and housekeeping proteins.

3.2.3 Tissue-specific and housekeeping proteins

Tissue-specific (TS) proteins are proteins that are expressed in only a few tissues,
while housekeeping (HK) proteins are proteins that are at the core of the cell ma-
chinery and thus are expressed in all or almost all of the cells. We later analyze
the properties of these two classes of proteins inside of protein-protein interaction
networks. To that end, we must first define a way to identify genes as TS or HK.

The classifications of tissue-specific proteins by Chang et al. [15] and Greco
et al. [30] are based on the underlying expression values from microarray analy-
ses. They define a tissue-selectivity score based on the distribution of expression
values of a gene across the different tissues. However, we want to find a simple
method that we can use on the already classified gene expression (i.e., the binary
gene expression values) so that it can be used universally across all our expression
datasets (note that, the HPA does not supply numeric expression values at all).
Bossi and Lehner [10] define tissue-specific and housekeeping genes in terms of
fixed ranges of tissues. For example, they classify genes expressed in 1 up to
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Figure 3.2: This figure shows the tissue expression distribution for all expression datasets,
i.e., in how many tissues each gene is expressed. The tissue expression is given by the
number of tissues a gene is expressed in divided by the number of total tissues. The genes
are displayed sorted by their respective tissue expression levels.
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Figure 3.3: This figure shows how we classify proteins into tissue-specific and house-
keeping based on their tissue expression. Here we show the classification for the Human
Protein Atlas data for threshold values t ∈ {0.15, 0.25}.

10 out of 79 tissues as tissue-specific and similarly 71 − 79/79 as housekeeping
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genes.
We take a similar approach by using thresholding. For a threshold t (e.g.,

10%) we define all proteins as tissue-specific if they are expressed in at most t
percent of all tissues of the expression dataset. Likewise, we define all proteins
that are expressed in at least (100− t) percent oh tissues as housekeeping. Figure
3.3 illustrates this thresholding concept on the Human Protein Atlas.

By using the same threshold t for classifying both TS and HK, it becomes more
feasible to explore the results of our later analyses (for example in Section 5.2.1)
for different TS and HK classifications (i.e., by varying the single parameter t).

The current definition of tissue-specific proteins is problematic, since proteins
which are never expressed in any tissues are still classified as tissue-specific. Es-
pecially the Gene Atlas and RNAseq Atlas datasets contain many such proteins.
To solve this problem, we only consider proteins that are expressed in at least
one tissue for the classification. We depict an example of a classification for all
datasets and a classification threshold of t = 15% in Figure 3.4. This shows that
the number of genes classified into either group heavily depends on the dataset
used.
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Figure 3.4: Here we show the classification into tissue-specific and housekeeping for all
expression datasets and a classification threshold of t = 15%.
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Figure 3.5: The relative sizes of the classes TS and HK are given for various classification
thresholds. The relative size is defined as the number of genes in the class divided by the
number of total genes in the expression dataset.

To further illustrate this point, Figure 3.5 shows the relative number of tissue-
specific and housekeeping proteins for various settings of the threshold t. We
vary the threshold in the range [0, 0.5], since any higher threshold would classify
proteins into both classes TS and HK. As Figure 3.5 shows, the housekeeping
class is twice as large as the size of the tissue-specific class for three out of the
four expression datasets. For the Gene Atlas however, approximately 3 times as
many proteins are classified as tissue-specific than as housekeeping proteins.

3.2.4 Expression data “core”
The tissue-specific expression datasets can be represented as a 2D matrix, where
the rows represent the proteins, and the columns represent the tissues. Each value
in the matrix is an expression value. If the expression data is classified into ex-
pressed and non-expressed, this matrix is a binary matrix.

Some of the expression datasets have missing values for some combinations
of proteins and tissues. The Human Protein Atlas has most missing values, due
to missing experiments. For some of the tissues less than half of the proteins
have been measured for expression in the current version of HPA. There exist also
proteins that have been measured in but a few of the tissues.

When generating tissue-specific PPI subnetworks, missing data poses a prob-
lem: how do we handle the nodes of the global PPI for which there is no data
available? Do we assume that it is expressed or not-expressed, and based on that,
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will the node be part of the subnetwork or not?
In order not to make any assumption, we only use those proteins and tissues

that, when combined, have no missing data. We define such a combination of
proteins and tissues as the core of the expression data set. In terms of a 2D binary
matrix (where 0 corresponds to missing data and 1 to data being available), we are
looking for a combination of rows and columns such that the sub-matrix given by
these rows and columns only contains 1s.

Ideally, we would like to find a combination of proteins and tissues that max-
imize the data points covered. If n is the number of rows of a core and m is the
number of columns of a core, we want to maximize n ·m, i.e., find a maximum
area core of the expression data set.

We are not aware of any algorithm solving this problem. Moreover, an ex-
haustive search for an optimal solution requires all possible choices of rows and
columns to be checked. This has exponential complexity: O(2n · 2m).

We therefore implement a greedy algorithm to approximately solve this prob-
lem. For a subset of tissues, we keep only those genes that are expressed in all
those tissues. To select a good subset of tissues, we first define the gene coverage
of a tissue as the fraction of genes that have an expression value in that tissue. We
then rank tissues according to their gene coverage and iterate over them in this
order and add one tissue at a time to the subset. For each tissue that is added, we
count the genes that have expression values in all of those tissues. We select the
subset of tissues that yield the maximum number of values covered, i.e.,:

max((number of tissues)× (number of proteins)) (3.1)

3.3 Properties of PPI networks

PPI n m k̄ max(k) Connected Components
Bossi 9974 77197 15.48 298 79
STRING 15867 304524 38.38 2065 67
IMEx 10937 58011 10.52 714 77
Havugimana 2989 13885 9.29 185 65
HI-2012 4298 13943 6.37 313 134

Table 3.4: Basic properties of the five PPI networks used in our analysis. k̄ is the average
node degree and max(k) is the maximum degree in the graph.
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3.3.1 Network sizes
We consider five different PPI networks in our analysis pipeline (see Section
2.1.4). The various PPI networks differ in size and their network properties (see
Table 3.4). The composite STRING PPI network is by far the largest network with
over 300 thousand interactions between a total of 15867 unique proteins. The
two PPI networks resulting from single experiments (CCSB’s Human Interactome
2012 and the protein complexes network from Havugimana et al. ) yield the small-
est networks. Both networks consist of approximately 13900 interactions. How-
ever, the interactions are restricted to 2989 unique proteins in the protein com-
plexes network, while the HI-2012 network reports these interactions between a
total of 4298 unique proteins. The reason for this difference is apparent when the
different experimental methodologies for finding interactions is considered. The
protein complexes network consists of experimentally found protein complexes,
where all proteins in these complexes are connected to all other proteins. This
results in fewer proteins being more densely connected. The number of interac-
tions in the composite networks by Bossi and Lehner and by the IMEx consortium
are approximately 58,000 and 77,000 respectively between close to 10,000 unique
proteins.

None of the PPI networks are connected, moreover, each network consists of
over 60 connected components that do not interact with each other.

3.3.2 Degree distribution
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Figure 3.6: The degree distribution of the STRING PPI network on a linear scale (left)
and a log-log scale (right).

Next, we will take a look at the degree distributions of the PPI graphs. The
degree distribution is the observed distribution of vertex degrees in the graph (see
Section 1.3). Figure 3.6 shows the degree distribution of the STRING network. At
first glance, the degree distribution appears to follow an exponential distribution.
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However, an exponential degree distribution would not allow for as many high
degree nodes as we observe for this and other PPI networks.

Subsequently, we fit three graph models to the observed degree distributions
of all PPI networks using Maximum Likelihood Estimation. The Erdös-Rényi
random graph model has a binomial degree distribution (see Section 1.3), this
model does not fit the observed degree distributions. Additionally, we fit an expo-
nential distribution and a power-law distribution to the degree distribution. Since
the power law becomes most prevalent in the “heavy tail” of degree distributions,
Clauset et al. [18] introduced a method that estimates a point xmin in the dis-
tribution which acts as a cutoff value. This cutoff is found by optimizing the
Kolmogorov-Smirnov goodness-of-fit statistic. The power-law is then fitted only
to values≥ xmin. Figure 3.7 shows the observed degree distribution and the fitted
distributions for all PPI networks.

Model Statistic Bossi STRING IMEx Havu. HI-2012

Binomial
χ2 1.6e+08 Inf 2.1e+06 2.1e+06 4e+04
p 0 0 0 0 0

Exponential
χ2 1.4e+04 1.3e+04 1.2e+04 2.7e+03 5.8e+03
p 0 0 0 0 0

Power-law
χ2 4.2e+02 2.6e+03 8.8e+02 1.7e+02 6e+02
p 6.8e-87 0 6.8e-186 1.4e-33 1.7e-126

Power-law χ2 1.8e+02 6.2 69 4.6 64
(tail) p 4.7e-33 0.72 2.2e-11 0.87 8e-11

Table 3.5: Results of the χ2 test for goodness of fit for the PPIs degree distributions and
different models.

Furthermore, we test how well the different models fit the degree distribu-
tion using Pearson’s χ2 goodness-of-fit test [48]. The result of this test is shown
in Table 3.5. None of the degree distributions fits a binomial (Erdös-Rényi ran-
dom graph) or exponential degree distribution (p = 0 in all cases). However,
even the power-law does not fit the degree distributions of any of the networks
(p ≤ 1.4 · 10−33 in all cases). Only by maximizing the fit using the method from
Clauset et al. [18], we observe two significant fits to the estimated power-law tail
distribution. The STRING PPI networks and the protein complexes network from
Havugimana et al. are the only two PPI networks that fit the scale-free model.
However, even though none of the networks fit the full power-law distribution, the
χ2 statistic is smaller (meaning better fit) for this distribution than for either the
binomial or the exponential distribution models.

We conclude from these results, that none of the PPI networks perfectly re-
semble the power-law distributions of scale-free networks. Still, these networks
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Figure 3.7: This figure shows the degree distributions of the PPI networks on log-log
plots. The four different models are fitted to the data and plotted as different lines (see
legend of this figure).
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all exhibit a “heavy tail” in their degree distribution and thus have a large number
of hubs, which is a prevalent property of scale-free and complex networks. We
will thus consider the PPI networks to be scale-free-like.

3.4 Tissue specific PPIs

A tissue specific PPI is a sub-graph of a PPI network, in which a vertex is only
present if it is expressed in the tissue. Similarly, an edge is only present if both
of the interacting proteins are expressed in the tissue. We construct such tissue
specific PPIs by combining the graph with expression data from an expression
dataset. Each protein/node is labeled with its tissue expression vector, which is a
binary vector indicating in which tissues the protein is expressed.

3.4.1 Expression coverage

size 14404 18444 3836 15061 21399

9974

4298

2989

15867

10937

89.3 %

80.3 %

90 %

86 %

79.1 %

90.7 %

85.5 %

90.7 %

87.6 %

81.9 %

29.3 %

23.1 %

37.6 %
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22.5 %

82.1 %
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86.3 %

82.5 %
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95.8 %

98.4 %
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94.7 %

93.9 %
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Figure 3.8: The percent of nodes (i.e., proteins) in the PPI networks for which the ex-
pression datasets contain expression values.

When we combine the PPI networks with the expression datasets, not every
protein in the PPI network is annotated with an expression value inside the expres-
sion dataset. This is because the expression datasets do not necessarily provide
expression values for all possible proteins. For some of our later applications and
analyses, we need every node in the network to be annotated. Proteins that have
no annotation in the expression datasets are simply removed from the network.
The tissue-specific subnetworks are therefore smaller than the original full PPI
networks.



3.4. TISSUE SPECIFIC PPIS 33

We are thus interested, how much smaller the networks will become. The table
in Figure 3.8 shows the percentage of proteins in each PPI network that have an
expression value associated with them. All expression sets but HPA cover about
80% of proteins in the PPI networks. Especially, the RNAseq Atlas, which is the
biggest expression dataset, covers more than 93% of proteins of all PPIs. Since
the HPA expression dataset is the smallest one (it only contains values that are
scored as reliable), it also shows the lowest coverage percentages, dropping as
low as 22.5%.

size 14404 18444 3836 15061 21399
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13943

13885

304524

58011
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86.7 %

86.3 %

74.7 %
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87.1 %

87.9 %

82.7 %
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Figure 3.9: The percent of edges in the PPI networks for which the expression datasets
contain expression values for both, connected proteins.

Since an edge in a PPI can only be present when both interacting partners are
preset, the percentages of edges that remain in the networks are lower than those
we showed before. Still, for most expression datasets more than 60% of edges are
covered for all PPIs. For the small HPA dataset however, the network size shrinks
substantially to less than 7% of the original network size (see the table in Figure
3.9).

3.4.2 Sizes of tissue specific subnetworks
In the previous section, we considered whether two interacting proteins have ex-
pression data associated to them. The graphs that contain only those nodes are
already smaller than the whole PPIs. However, in the tissue specific sub-graphs,
an edge exists only if both interacting proteins are expressed in the same, specific
tissue.

Lopes et al. (2011) [41] constructed tissue-specific networks in the same way
we do. They found that the size of the specific subnetworks is in the range 1−25%
of the original network size. In our case, the size of the subgraphs depends on the
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93.3 % 17.2 % 60.3 % 58.9 % 62 %

86 % 4.8 % 52.2 % 50 % 31.4 %

97.4 % 35.6 % 72.1 % 64.5 % 77.2 %
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Figure 3.10: This figure shows the average size (in number of edges) of tissue-specific
subnetworks relatively compared to the full graph.

expression data: some resulting sub-graphs are considerably smaller, while others
decrease only slightly in size. In Figure 3.10, we show the average number of
expressed edges of the tissue-specific subnetworks relative to the total number
of edges. The resulting relative size differences depend to a large degree on the
expression data set. Over 80% of all edges in all PPI networks are expressed when
the Illumina Body Map is used. Using the Gene Atlas on the other hand results
in at most 35% of edges remaining. Nevertheless, the number of expressed edges
depends also on the PPI network, with most edges being expressed in the protein
complex network from Havugimana et al.

3.5 Algorithms for analysis of tissue-specific PPI net-
works

3.5.1 Graph representation of tissue-specific PPIs

For our analysis of tissue-specific PPI graphs we use and extend the graph data-
structure and the algorithms implemented in the NetworKit toolkit [58] (see Sec-
tion 2.4). A tissue-specific graph is represented as a single graph in NetworKit,
where we also label each node with a binary expression vector. For a given pro-
tein (i.e., a vertex), this expression vector contains a binary value for each tissue,
stating whether the protein is expressed in each tissue.

This graph data-structure implicitly defines a set of subgraphs of the full PPI
graph. For each tissue, the tissue-specific subgraph is defined as the graph con-
taining only nodes whose expression value is 1 for that tissue (see also Section
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1.2.5).

3.5.2 Local clustering coefficient
The local clustering coefficient was previously introduced in Section 1.3.3. For
computing the local clustering coefficient, the number of triangles around each
node has to be determined. A triangle around a node u consists of three distinct
nodes including u itself, that are all connected to each other.

The NetworKit toolkit [58] implements an OpenMP parallel algorithm to de-
termine the local clustering coefficients. The computation of the local clustering
coefficients of nodes in the graph are independent of each other. Therefore, the
computation can be parallelized across the nodes in the graph. The algorithm
implemented by the NetworKit toolkit is shown in Algorithm 3.1. We use the
parallel for keywords to represent OpenMP parallelized for loops.

parallel for u in V:
triangles = 0
for (u, v) in E:

for (v, w) in E:
if (u, w) in E:
triangles += 1

cc[u] = triangles / (deg(u) * (deg(u) - 1))

Algorithm 3.1: The local clustering coefficient method in NetworKit, where the graph is
given by G(V,E) with nodes V and edges E.

This algorithm extends all paths of length two from the source node u. The
run time for a given node u (i.e., the inner part of the loop) thus depends not only
on the degree of u, but also on the degrees of all neighboring nodes. The run time
for a single iteration of the outer-most loop is thus given by:

Tcc(u) = O

deg(u)×
∑

(u,v)∈E

deg(v)

 (3.2)

where u is the node for which the local clustering coefficient is calculated.
In our analysis pipeline we calculate the local clustering coefficients for all

tissue-specific subgraphs (TSPPIs) for each combination of PPI and expression
dataset. For each tissue, a new subgraph is instantiated and the analysis is executed
in the subgraph. The whole analysis runs for multiple minutes. Here, we propose
an alternate algorithm in order to decrease the run-time. The idea is to calculate
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the local clustering coefficients for all tissues simultaneously using the tissue-
specific graph representation. This eliminates the need to create new graph objects
for each tissue-specific subgraph which is analyzed.

First, we propose to change the NetworKit algorithm so that only direct neigh-
bors of u are used for the calculation of the local clustering coefficient of u. This
algorithm goes through all possible combinations of neighbors and then checks
whether the two neighbors are connected by an edge. The resulting algorithm is
shown in Algorithm 3.2 and the run time for a single node u (i.e., a single iteration
of the outer-most loop) is given by:

Tcc′(u) = O
(
deg(u)2

)
(3.3)

parallel for u in V:
B = neighbors(u)
triangles = 0
for i in 1..(|B|-1):
for j in (i+1)..|B|:

if (B[i], B[j]) in E:
triangles += 1

cc[u] = 2 * triangles / (deg(u) * (deg(u) - 1))

Algorithm 3.2

We show the increased performance of this algorithm compared to the original
NetworKit implementation for our datasets in Section 5.1.

Tissue-specific subgraphs Next, we change the algorithm further so that we
will not have to create a new subgraph for each tissue. Instead, we use the graph
representation of the tissue-specific graphs directly and thus operate only on a
single graph and on the expression vectors of the nodes. We observe that, if a
triangle exists in the full PPI graph, then it exists in a tissue-specific subgraph if
and only if all three nodes are expressed in that tissue. Thus we define a triangle
expression vector as the boolean AND of the expression vectors of the three nodes.
For each triangle in the graph, this triangle expression vector states in which tissue
it is fully expressed and therefore present in the tissue specific graph.

To calculate the local clustering coefficients for a single node for all tissues,
we thus simply need to add the triangle expression vectors for all triangles in the
global PPI graph around that node. We show the resulting algorithm in 3.3. Since
a single node can have different clustering coefficients for different tissues, the
local clustering coefficients per node are also a vector. These vectors of clustering
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coefficients are computed from the number of triangles in each tissue and the
number of maximum possible triangles for each node and for each tissue.

In Section 5.1, we illustrate that this algorithm performs considerably better
compared to creating a new graph instance for each tissue and running either Al-
gorithm 3.1 or 3.2 on all subgraphs.

parallel for u in V:
B = neighbors(u)
# vector of size equal to number of tissues
triangles = [0,...,0]
for i in 1..(|B|-1):
for j in (i+1)..|B|:
if (B[i], B[j]) in E:

# vector boolean AND
t_expr = expr[u] and expr[B[i]] and expr[B[j]]
# vector addition:
triangles += t_expr

# vector ops
cc[u] = 2 * triangles / (deg(u) * (deg(u) - 1))

Algorithm 3.3: our algorithm to simultaneously calculate the local clustering coefficients
in all tissue-specific subnetworks.

3.5.3 Betweenness centrality
The NetworKit toolkit [58] implements Brandes algorithm [11] for computing
the betweenness centrality. This algorithm performs a breadth-first search (BFS)
and then a backwards accumulation in the BFS search tree for every node in the
network. Since a BFS runs in O(m), Brandes algorithm has a runtime of O(n ·m)
time, where n is the number of nodes in the graph and m is the number of edges.

For our later analysis of tissue-specific subnetworks, we calculate the between-
ness centrality for all proteins in all tissues for all combinations of PPIs and ex-
pression datasets. This operation takes considerable time. Our goal is to adapt
this algorithm in a similar manner as we did for the local clustering coefficient,
i.e., run the analysis for all tissues simultaneously without the need to create new
graph instances for each subnetwork. That algorithm is run on the global graph
once and the results for all tissues are computed simultaneously using vector rep-
resentations.

However, this approach does not work for the BFS, since the BFS queue and
the search paths diverge in case a node is missing in one subnetwork, but not in
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another. We therefore revert to running Brandes algorithm on each single tissue-
specific subgraph independently.

The implementation of Brandes algorithm in NetworKit is sequential (i.e., not
parallelized). Since the subgraphs for all tissues are independent from each other
in regards to computing the betweenness centrality, we can easily parallelize the
computation across all the tissues. We use OpenMP to parallelize the outer loop
which loops over all tissues of a tissue-specific graph.

Furthermore, we use two approaches to calculate the betweenness centrality
for all tissue-specific subgraphs of one PPI. The first method we use, is to create
new graph instances for each tissue and then run the NetworKit implementation
on those graphs. This method does not make use of the tissue-specific graph
representation. The algorithm for this approach is shown in Algorithm 3.4.

def tissue_betweenness(TSG)
parallel for tissue in TSG.tissues():

G = TSG.subgraph(tissue)
bw[tissue] = NetworKit.betweenness(G)

Algorithm 3.4: The parallelization over tissues for calculating the betweenness centrality
for all tissues in the tissue-specific graph given by TSG.

Additionally, we implemented modified version of the algorithm from Net-
worKit which works directly on the tissue-specific graph representation. Only a
few changes are necessary: first we start the BFS only on nodes which are ex-
pressed in the current tissue. Additionally, whenever an edge is expanded in the
BFS, we have to also check whether the target node is expressed in the current
tissue. Only when the node is expressed, it will be inserted into the BFS queue.
We show the performance of these two methods in Section 5.1.

3.6 Scoring clusters based on Gene Ontology
Given a cluster in a clustering of a protein-protein interaction network, we would
like to be able to find out how “good” the cluster is. We would like to be able to
say that a cluster is “good”, if the genes within the cluster are biologically more
similar to each other than they are to other genes not contained in that cluster.

To that end, we will use Gene Ontology to calculate the similarity between
genes and subsequently we will score clusters based on this gene similarity. We
will introduce Gene Ontology in Section 3.6.1 and then explain semantic sim-
ilarity measures in 3.6.2 and finally show how we efficiently implemented the
semantic scoring of clusters in 3.6.3.
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3.6.1 Gene Ontology
A Gene Ontology defines a set of standardized terms (so called GO-Terms) to
describe the function, processes, and localization of proteins and gene products
[19]. These terms are grouped into 3 distinct namespaces: molecular function,
biological process, and cellular component. In each of these groups, the terms
are organized hierarchically in a directed, acyclic graph (DAG). This hierarchy of
terms is continuously updated and published by the Gene Ontology Consortium.

In addition to the standardized vocabulary in form of GO-Terms, the Gene
Ontology Consortium publishes gene product annotations. These associate each
protein/gene with a set of GO-Terms describing its molecular function, the bio-
logical processes the protein is involved in, and the localization of the protein (i.e.,
its cellular components).

Figure 3.11: This figure depicts the GO-Term hierarchy of the term “carbohydrate
catabolic process”. We created this figure with the QuickGO online GO browser on May
16th 2014 [7]

Take, for example, the protein Glucose-6-phosphate dehydrogenase (G6PD),
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which is an essential part of the cell’s metabolic process. This protein is annotated
with 11 distinct GO-terms (AmiGO2 [13] queried on May 16th 2014), one of
which is the GO-term GO:0016052: “carbohydrate catabolic process”. This term
is part of the biological process namespace. The term and its ancestors are shown
in Figure 3.11. This example depicts the GO-DAG graph structure, which shows
the ancestors of the “carbohydrate catabolic process“ term, including the GO-
terms: “metabolic process” and “carbon utilization”.

The full GO-DAG consists of a total of 38,738 GO-Terms with 64,457 edges
(see Table 3.6). The biological process namespace is the largest of the three dis-
tinct namespaces with 25,637 nodes and 47,588 edges.

namespace terms (nodes) edges
biological process 25637 47588
molecular function 9678 11729
cellular component 3423 5140
total 38738 64457

Table 3.6: The number of GO-Terms and edges in the GO-DAG for each namespace

3.6.2 Semantic similarity
In order to be able to define similarity between genes, we will first summarize
previous methods for determining semantic similarity for GO-Terms. We will
then go on to describe a method to combine GO-Term similarities in order to
calculate a functional similarity between genes.

Semantic similarity between two GO-terms relates to how similar these two
terms are. Different similarity measures have been proposed, e.g., by Reisnik [50],
[51] and Lin [38].

These two similarity measures are based on the information content of GO-
Terms, which is defined in the following paragraphs.

Frequency of GO-Terms First, we need to define the frequency and probability
of a GO-Term. The gene product annotation data provided by the Gene Ontology
Consortium associates each gene with multiple GO-Terms. Inversely, each GO-
Term can be mapped to multiple genes, the number of which shall be given by
gene_no(t) for the GO-Term t. The frequency f(t) of a term t is then defined as
the sum of the number of genes mapping to itself or any of its decedents in the
DAG. The frequency is thus given by:

f(t) = gene_no(t) +
∑

t′∈decendents(t)

gene_no(t′) (3.4)
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Probability of GO-Terms The probability of a GO-Term is defined as its rel-
ative frequency, i.e., its frequency divided by the frequency of the root node of
the DAG. By this definition, the probability of the root node equals 1, while the
probability of all other nodes is between 0 and 1. The probability p(t) of a term t
is therefore given as:

p(t) = f(t)/f(root) (3.5)

Information content Analogous to the definition of Information in Information
Theory, the Information Content (IC) of a term is defined as [50]:

IC(t) = − log10 p(t) (3.6)

Similarity measures Based on this definition of Information Content, Resnik
defines the similarity between two terms as the maximum Information Content of
all common ancestors of these two terms [50]. Thus:

simR(t1, t2) = max
t′∈CA(t1,t2)

IC(t′) (3.7)

where CA(t1, t2) is the set of all common ancestors of t1 and t2.
Lin on the other hand, defines the similarity of two GO-Terms as the maxi-

mum ratio between the Information content of the common ancestors and of the
terms themselves [38]. From the definition of the frequency and thus Information
Content follows that Lin’s similarity measure takes values in the range between 0
and 1, while Resnik’s measure is not bounded. Lin’s similarity measure for two
terms is given by:

simL(t1, t2) = max
t′∈CA(t1,t2)

2 · IC(t′)

IC(t1) + IC(t2)
(3.8)

Based on the measures by Resnik and Lin, Schlicker et al. proposed what they
call relevance similarity [57]. They also take the overall probability - or rather
specificity - of the common ancestor terms into account. Their measure is given
by:

simrel(t1, t2) = max
t′∈CA(t1,t2)

(
2 · IC(t′)

IC(t1) + IC(t2)
(1− p(t′))

)
(3.9)

Similarity of proteins So far similarity was only defined for pairs of GO-Terms.
A protein however can have multiple annotations (more than one GO-Term).
Schlicker et al. define the BPScore similarity measure for two proteins as the
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maximum relevance similarity between all pairs of GO-Terms (one term from the
annotation of each gene) restricted to terms from the biological process names-
pace [57].

BPScore(g1, g2) = max
t1∈ABP (g1)
t2∈ABP (g2)

(simrel(t1, t2)) (3.10)

where ABP (g) is the annotation for the gene product g, i.e., a set of GO-Terms,
but restricted to terms belonging to the biological process namespace.

3.6.3 Efficiently scoring clusters
Scoring clusters Based on the above similarity measure between proteins we
can now score clusters. The goal of such a semantic similarity score is to assign
clusters a high score if the proteins within the cluster are more similar to each
other than they are to other proteins. Similarly, we want to give clusters a low
score if the proteins in the cluster are not semantically more similar to each other
than to other proteins.

We define a cluster’s semantic similarity score as the average of all pairwise
BPScores between all proteins in the cluster minus the average of all pairwise
BPScores between all protein pairs where one protein is part of the cluster and
the other is not. More formally:

scoreCl(C) = mean
g1,g2∈C
g16=g2

(BPScore(g1, g2))−mean
g1∈C
g2∈C

(BPScore(g1, g2)) (3.11)

where C is a cluster in the form of a set of proteins and C is the set complement
of C, i.e., all proteins that are not in the cluster C. Since the BPScore is always
in the range [0, 1], the difference of two average BPScore values will be in the
range [−1, 1].

Complexity For a cluster of size k from a total population of n proteins, the
BPScore() function has to be evaluated k(k−1)

2
times for the first mean and k(n−

k) times for the second mean for a total of O(nk) times. For all clusters in a
clustering this will be in O(n2).

Furthermore, the computation of a single BPScore requires evaluation of the
simrel function for each pair of GO-Terms that the genes are annotated by. For
each pair of GO-Terms, the GO-DAG has to be traversed to find the common
ancestor with maximum information content. The evaluation of clusters is thus a
very time consuming process.

In the following, we show how to speed this process up by approximately two
orders of magnitude. We do not solve this by introducing a new algorithm, but
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by optimizing the similarity computation and by introducing lookup tables, thus
shifting the majority of the computations into a single pre-processing step.

fastSemSim Mina et al. implemented an extensive software framework fastSem-
Sim for “fast and easy evaluation of semantic similarity measures on GO annota-
tions” [44], [43]. We used their software to score clusters in PPI network cluster-
ings. fastSemSim scores a single cluster of 500 proteins in 43.1 seconds. Cluster-
ing a PPI network with NetworKit takes at most 10% of that time for our largest
PPI network. Thus fastSemSim is too slow for our purposes (see also table 3.7.

Speeding up the scoring To evaluate clusters more efficiently, we implemented
our own methods. To this end, we re-implemented the scoring functions from
Schlicker et al. (2006) [57]: simrel and BPScore. Note that these are also imple-
mented in fastSemSim among many other scoring techniques. We however only
concentrated on these two measures.

We based our implementation on the goatools software [60]. Specifically,
we modified the graph data structure of the GO DAG graph used in the software
to allow for more efficient global lookups of GO-Terms, their edges, children,
parents, ancestors and decedents.

simrel lookup table First, we observe that the relevance similarity simrel only
depends on the GO DAG graph structure and the gene product annotations. Es-
pecially, it does not depend on the PPI graph structure or the specific clusters.
Therefore, we can pre-compute the simrel scores once and reuse them for all scor-
ings. The similarities are calculated for all GO-Terms and then saved as single-
precision floating point values of 4 bytes each. Single precision representation is
sufficient, since the total precision is bounded by the comparatively small total
number of GO-Terms and genes in the GO-DAG. Since there are 25,637 distinct
GO-Terms in the biological process namespace (see Table 3.6), thus the lookup
table would have a size of 25, 6372 · 4 bytes ≈ 2.5 GiB. However, far from all
GO-Terms are used in actual gene product annotations. Some are only internal
nodes representing more abstract categories, and no genes are directly annotated
by these. Saving the score of only those GO-Terms that appear in the annotation,
we are left with a total of 9, 392 terms. This yields a lookup table with a size of
9, 3922 · 4 bytes ≈ 336 MiB, which can easily be kept in main memory. Using
this lookup table for scoring a cluster of 500 genes, we observe a speedup of 3.44
compared to re-computing the similarity score every time.

BPScore lookup table Analogously, the BPScore measure for scoring genes
in a pairwise fashion (where each gene is annotated with multiple GO-Terms)
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depends only on the GO-DAG graph and the gene annotations. Thus, we apply
a pre-computed lookup table here as well. In order to reduce the memory usage
and pre-computation time, we restrict ourselves to genes that are annotated with at
least one GO-Term from the biological process namespace. Note that genes with
no such annotation will always have a BPScore of 0, thus there is no need to
pre-compute and save these BPScores. There are a total of 15, 116 such genes,
therefore theBPScore lookup table has a size of 871MiB. Note, that this lookup
table is computed only once (taking approximately 5000 seconds), saved, and then
reused every time a clustering is scored.

Further reducing the complexity When scoring a cluster C of size k using the
BPScore lookup table, the following steps are performed:

1. internal sum =
∑

g∈C
∑

i∈C,i6=g BPScore[g, i] → O(k2)

2. external sum =
∑

g∈C
∑

j∈C BPScore[g, j] → O(nk)

3. calculate mean for each: divide by number of summands

4. subtract the means

However, we observe that for any gene product g:∑
j∈C

BPScore[g, j] =
∑
i∈G

BPScore[g, i]−
∑
i∈C

BPScore[g, i] (3.12)

where G is the set of all genes and the sum
∑

i∈GBPScore[g, i] is the sum
over the row g in the lookup matrix/table. Therefore, in addition to the matrix
BPScore[i, j], we save a vector containing the sum of each row. This elimi-
nates the O(nk) step in the scoring computation and we are left with O(k2) table
lookups and additions for scoring a cluster of size k.

Runtime evaluation Using this BPScore lookup table, we observe a 46-fold
speedup compared to using the simrel lookup table. This yields a total speedup
of 113× compared to not using any lookup tables. In Table 3.7 we show the run
times for scoring clusters of various sizes using fastSemSim, our implementation
without any pre-computed lookup tables, our implementation using the simrel

lookup table and finally using the BPScore lookup table.
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n fastSemSim our impl simrel lookup table BPScore lookup table
10 1.78 s 0.0246 s 0.0025 s 6.87e-05 s
100 2.56 s 0.747 s 0.3044 s 0.0037 s
250 13.56 s 3.95 s 1.637 s 0.0236 s
500 43.13 s 12.60 s 5.148 s 0.1108 s
1000 161.5 s 47.17 s 18.70 s 0.3726 s

Table 3.7: Timing results for calculating the pairwise BPScore for n ∈
{10, 100, 250, 500, 1000} genes with fastSemSim, our Implementation and our imple-
mentation using the two levels of lookup tables. The timings were all run single threaded
on a Intel(R) Core(TM) i5-3570 system with 8 GiB of main memory.

3.7 Clustering of PPIs

Chen and Wang (2012) have used the CFinder clustering method to identify clus-
ters of functionally related proteins in tissue-specific PPIs [17].

We use clustering algorithms to find clusters or modules of proteins in tissue-
specific PPIs with the goal of uncovering specific functional modules. Further-
more, we investigate whether clusters found in tissue-specific networks score
higher in terms of their BPScore than clusters found in the global/non-specific
PPI networks.

3.7.1 Clustering and Modularity

A clustering (or partition) of a graph is defined as a set of disjunct sets of nodes
which cover the whole graph. For a clustering ζ ⊂ 2V of a graph G(V,E) this
means that for each pair of clusters C1, C2 ∈ ζ where C1 6= C2 that C1 ∩ C2 = ∅
and further that: ⋃

C∈ζ

C = V (3.13)

Modularity The aim of a clustering algorithm, in our context, is to maximize
the modularity of the clusters in a graph. The modularity measures the relation
of the number and weight of edges within a cluster versus those edges between
clusters. To define the modularity more formally, first the coverage of ζ for a
graph G(E, V ) is defined as [58]:

coverage =

∑
C∈ζ

∑
e∈E(C) ω(e)∑

e∈E ω(e)
(3.14)
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where E(C) are all edges internal to the cluster C ⊂ V and ω(e) is the edge-
weight of an edge e. Similarly, the expected coverage is defined as:

expected_coverage =

∑
C∈ζ(

1
2

∑
v∈C ω(v))2

(
∑

e∈E ω(e))2
(3.15)

where ω(v) is the weighted degree of v, which is the sum of the edge-weights over
all adjacent edges of v. The modularity is then defined as the difference between
the coverage and the expected coverage [58].

Modularity of a cluster Using this definition of modularity, we define the mod-
ularity of a cluster C in a clustering as:

m(C) =

∑
e∈E(C) ω(e)∑
e∈E ω(e)

−
(1

2

∑
v∈C ω(v))2

(
∑

e∈E ω(e))2
(3.16)

This definition allows us to score each cluster by its contribution to the total mod-
ularity score of a clustering, since:

modularity(ζ) =
∑
C∈ζ

m(C) (3.17)

3.7.2 Clustering algorithms
In this study, we use the Parallel Label Propagation and Parallel Louvain Method
clustering algorithms, which are implemented in the NetworKit toolkit [58] (see
also Section 2.4).

Similar to our modifications to the algorithms for finding the local clustering
coefficients and the betweenness centrality, we modify the PLP algorithm to work
directly on the tissue-specific graph representation. The modified algorithm clus-
ters all tissue-specific graphs simultaneously by taking advantage of the binary
vector representation of the per protein tissue-expression.

Instead of using a single label for each node, we use a vector of labels with one
label per tissue. Initially, the labels are all initialized to the same value. In each
iteration a node changes its label to the most common label in its neighborhood.
Since the adjacent edges of a node differ from tissue to tissue, we do this selec-
tion separately for each tissue. Therefore, while running the label propagation
algorithm, a node might become labeled with distinct labels.

Using the original PLP algorithm, we have to create a subgraph for each tissue
and run the algorithm on each subgraph. Hence, there is an outer loop across
all tissues. In our modified PLP algorithm we have moved this loop into the
process for each node. However, contrary to our algorithm for the local clustering
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coefficient, we can not take as much advantage of the vector representations. This
modified algorithm performs worse than running the original on newly created
subgraphs (see Section 5.1.3).

3.7.3 Identifying important modules

The clusterings returned by the community-detection algorithms cover all nodes
and thus proteins in the graph. However, we are only interested in the “good”
clusters. Since a “good” clustering is one which maximizes the modularity, we
rank the clusters of a clustering by their contribution to the total modularity as
defined in equation 3.16. We arbitrarily choose the 20% highest ranking clusters as
“good” clusters. We later show in Section 5.4, that these clusters have significantly
higher BPScores than the remaining 80% of clusters.

In order to determine the semantic and functional similarity score of each of
those clusters, we use the Gene-Ontology based BPScore, previously introduced
in Section 3.6. We use this score for testing the results of our clustering approach.
If a cluster has a BPScore above zero, its proteins are semantically more related
to each other than they are to other proteins. This might indicate that we have
successfully identified clusters of semantically and functionally related proteins.

We test this for all tissue-specific PPIs and different clustering algorithms
(PLP and PLM) and different parameter settings for those algorithms. We show
the results in Section 5.4.

We furthermore investigate, whether clusters found in tissue-specific networks
obtain higher BPScores than clusters in global PPI networks. We repeat this for
all combinations of PPIs and expression datasets and run the clustering algorithms
with a set of different parameters. The results are shown in Section 5.4.

3.7.4 Edge weighting

The clustering algorithms and the definition of modularity take into account the
weights of the edges in the graph. So far the full PPI graph and the tissue-specific
subnetworks are all unweighted graphs. Thus, all the edge weights default to
1.0 in the implementations of the clustering algorithms in NetworKit. In addition
to the unweighted graphs, we construct weighted PPI graphs by combining PPIs
with expression data. We base the edge weights on the expression profiles of the
interacting proteins. We evaluate the clusters found in those graphs using the same
clustering algorithms which we used for the previous analysis.

We try two different methods for weighting the edges of a PPI based on the
expression data. As a first approach, we use a scaled correlation and secondly we
base the weight on the co-expression of the interacting proteins.
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Correlation weight For any edge (p1, p2) in the PPI graph, we determine the
Pearson correlation coefficient corr( ~ep1 , ~ep2) of the expression vectors for p1 and
p2. The expression vector ~ep for a protein is a binary vector, which contains for
each tissue whether this protein is expressed or not. The value of the correlation
coefficient lies in the range [−1, 1]. We scale the correlation into the range [0, 1]
and assign this as the weight of the edge:

ω((p1, p2)) :=
1

2
· (1 + corr(ep1 , ep2)) (3.18)

Two proteins with a perfect negative correlation are never expressed together. An
edge between those proteins will be assigned a weight of zero, which agrees to
the fact that these proteins can never interact.

Co-expression weight The second edge weight is based on the number of tis-
sues in which both interacting proteins are simultaneously expressed. We call this
number the co-expression count of two proteins and denote it as coexpr_count(p1, p2)
for two proteins p1 and p2. Additionally, let expr_count(p) for any protein p be
the number of tissues in which this protein is expressed. Given these, we define
the co-expression edge weight as:

ω((p1, p2)) :=
coexpr_count(p1, p2)

max (expr_count(p1), expr_count(p2))
(3.19)



Chapter 4

Implementation

In this chapter, we will describe our implementation of the pipeline used for data
import, management and analysis. More Specifically, we will describe the tech-
nologies and programming languages used in each part and we will lay out the
general software structure.

Our implementation can be roughly categorized into three main components.
First, the data import and normalization procedures, then the tissue-specific graph
analysis, and last data analysis and visualization. We illustrate the overall layout
of and functionality of these components in Figure 4.1.

4.1 Data pipeline
The first part of the implementation consists of the data importing and normaliza-
tion steps. We described the data processing steps in Section 3.1.

We implement the data import and processing using Python. For a unified
data format and storage we use the SQL database SQLite. We store the PPIs, the
expression data sets, the ID mapping tables, and the analysis results in the same
SQL database.

In order to abstract the common processing steps for PPIs and expression
datasets, we define an object-oriented class hierarchy (see figure 4.2). Since each
PPI and expression dataset is stored as a SQL table, we define a TableManager
as a common base class which implements common functions for managing SQL
tables. Two abstract classes PPI and ExpressionSet inherit from TableManager.
These two classes implement the common processing steps for PPIs and expres-
sion datasets.

Each PPI is implemented as a class inheriting from PPI. In the class for each
PPI only PPI specific functions are implemented, such as importing the down-
loaded files in their raw format and filtering by reliability. The implementations

49
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Figure 4.1: Overview of all components of our implementation.

for normalization and ID mapping are shared across all instances.
We implement a class for each expression dataset in an analogous way. Here

again, only those functions which are expression set specific are implemented and
all other functions are implemented in ExpressionSet and thus shared across
all instances.

We chose to implement the pipeline in this object-oriented and modular fash-
ion, to allow for easy extensibility. A new PPI or expression dataset can be added
to the pipeline by inheriting from the corresponding base class and then overwrit-
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Table Manager

              PPI

___________________

init()

import_raw_file()

filter()

id_mapping()

normalize_table()

normalize_graph()

    ExpressionSet

__________________

init()

linearize_table()

filter()

id_mapping()

normalize_table()

rm_duplicates()

classify()

get_core()

STRING

Bossi

HI-2012

Havu

IMEx

GeneAtlas

BodyMap

RNAseqAtlas

HPA

Figure 4.2: Class diagram of the data import and processing pipeline.

ing only those functions which are specific to the newly added class.

4.2 Analysis

4.2.1 Graph analysis

For analyzing the PPI and tissue-specific PPI graphs, we use the NetworKit toolkit
(see also Section 3.5).

We implement a tissue-specific graph class TsPPI using C++. This class
contains a NetworKit::Graph instance for the PPI network. The per protein
tissue expression is implemented as a node label consisting of a binary vector. We
use boost’s boost::dynamic_bitset as implementation for the binary vector.
Among others, this class overloads operators for binary or, binary and, and meth-
ods to count the number of bits that are set to 1. We use these functions in our
implementations of the graph algorithms for tissue-specific PPIs (local clustering
coefficients and betweenness).

We further implement C++ functions to load and construct the tissue-specific
PPIs from the SQL database. We use the SQLiteC++ wrapper to access the
database from within C++ [52]. Since NetworKit uses integer vertex identifiers,
we also implement a mapping of gene names and tissues to integers. After anal-
ysis of the tissue-specific graphs, we map these integers back to the original gene
names, prior to storing the results of the analysis into the SQL database.
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Furthermore, we implement a cython Python interface for our implemented
classes and algorithms, which is compatible with NetworKit’s cython Python in-
terface. We use this interface from within Python scripts in order to analyze all
possible tissue-specific graphs for all pairs of PPIs and expression datasets.

4.2.2 Final data analysis and visualizations
After all graphs have been analyzed and the results have been stored in the SQL
database, we use R for the final data analysis and visualization. Most of the plots
and graphs in this thesis are generated using the R ggplot2 library.
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Evaluation and discussion

5.1 Performance evaluation

5.1.1 Local clustering coefficient
We introduced a modified version of the NetworKit algorithm for computing local
clustering coefficients in Section 3.5.2. Additionally, we provided a new algo-
rithm to compute local clustering coefficients for all tissues simultaneously using
the tissue-specific graph representation, in which each node is annotated with an
expression vector. Here, we will evaluate the performance of the three methods
for calculating the local clustering coefficients in all tissue-specific subnetworks.

The first algorithm, we evaluate, is the original implementation from the Net-
worKit toolkit. This algorithm extends all paths of length 2 from the current node.
The second algorithm instead goes through all possible choices of two distinct
neighbors. We call this method Neighbor combinations in the figure below. These
two algorithms both work on a single graph data-structure. Thus a new subgraph
has to be created for each tissue. The final algorithm we evaluate, is our proposed
algorithm which operates directly on the tissue expression vectors. This algorithm
is denoted as Tissue expr. vectors below.

We ran the experiments on an Intel(R) Core(TM) i5-3570 system with 8 GiB
of main memory and four physical cores. Each algorithm was run with 4 OpenMP
threads. We ran the algorithms on all 25 combinations of PPI networks and ex-
pression datasets. In Figure 5.1, we show the results for the 5 instances that have
the highest runtime for the NetworKit method. These five instances are also the
largest among all 25 in terms of the number of edges multiplied with the number
of tissues.

The benchmark results show that the Neighbor combinations algorithm per-
forms by a large margin better than the algorithm implemented in NetworKit. We
observe the largest speedup (> 14) for the STRING and Gene Atlas combination.
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Figure 5.1: In this figure we show the results of benchmarking the three different methods
for calculating the local clustering coefficients in all tissue-specific subnetworks for the
five largest combinations of PPI networks and expression datasets.

Furthermore, we find that the algorithm that operates directly on the expres-
sion vectors achieves another considerable speedup over the Neighbor combina-
tions method. However, the speedup between these two methods varies from as
low as ≈ 1 all the way up to > 10. The results for all 25 combinations of PPI
networks and expression datasets are printed in the appendix in Table A.1.

Method Full.Runtime
NetworKit 211.1 s
Neighbor combinations 31.0 s
Tissue expr. vectors 7.6 s

Table 5.1: The total runtime for calculating the local clustering coefficients in all tissues
for all 25 combinations of PPI networks and expression data sets.

In Table 5.1, we show the total cumulative runtime for executing the algo-
rithms on all PPI networks and expression data sets. These runtimes illustrate the
large margin of improvement over the NetworKit implementation.

5.1.2 Betweenness centrality

Next, we will evaluate the performance of the two methods for calculating the
betweenness centrality for all tissue-specific subnetworks. The two methods were
introduces in Section 3.5.3.

Figure 5.2 shows the running times of the two methods for the 8 largest in-
stances of all PPI networks and expression combinations. We ran these experi-
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ments on the same test system as for the clustering coefficients. Both methods
were run with OpenMP parallelism with 4 threads.
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Figure 5.2: The run times of the two different methods for the betweenness centrality for
the largest 8 PPI and expression instances.

We observe mixed results: the method that creates new subgraphs for each
tissue performs better in some, but not all cases. For the STRING PPI combined
with the Gene Atlas expression set, the second method performs better by a factor
over 1.5×.

Method Sequential Parallel Speedup
Create Subgraphs 2612.9 s 1029.4 s 2.54 ×
Use Tissue Vectors 3124.7 s 971.0 s 3.22 ×

Table 5.2: The total run time for calculating the betweenness centrality in all tissues for
all 25 combinations of PPI networks and expression datasets.

In Table 5.1 we show the run time accumulated across all PPI networks and
expression datasets for the cases when they are run sequential and in parallel using
4 OpenMP threads. When running the algorithms sequential, we observe that the
Tissue Vectors method takes approximately 1.2 times longer. For the parallel exe-
cution, however, this method reaches a speedup of 3.22×, which is larger than the
2.54× speedup obtained with the Subgraph method. Due to the higher speedup,
the total parallel runtime is smaller for the Tissue Vectors method. The better
speedup could be attributed to data remaining in a shared chache, since the Tissue
Vectors method uses only one instance of the tissue-specific graph representation,
whereas the first method creates a new graph for each iteration.

Table A.2 in the appendix shows the run time for all PPIs and expression
dataset combinations for both methods.
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5.1.3 Parallel Label Propagation

We implemented an adapted version of the Parallel Label Propagation (PLP) al-
gorithm to use the tissue-specific graph representation. We show the resulting
runtime for some of the PPI and expression combinations in figure 5.3.

0.6 s
1.1 s

0.2 s
0.9 s

0.4 s
1 s

2.6 s
6.6 s

0.8 s
4.5 s

0.4 s
0.8 s

Bossi − Gene Atlas

Bossi − HPA All

IMEx − Gene Atlas

STRING − Gene Atlas

STRING − HPA All

STRING − RNAseq Atlas

0 2 4 6
Run time [s]

Method

Create Subgraphs

Use Tissue Vectors

Run time of PLP for adapted algorithm

Figure 5.3: The run times of the adapted PLP algorithm compared to running the original
NetworKit implementation on each subnetwork separately.

The results indicate, that the algorithm adapted for the tissue-specific graph
representation performs less well than the original NetworKit implementation. We
observe up to a factor 4× difference in runtime. We therefore conclude, that in
this case there is no gain from adapting the algorithm to run on our tissue-specific
graph representation.

We show the runtime results for all combinations of PPIs and expression
datasets in Table A.3.

5.2 Benchmarking prior results

5.2.1 Analysis and Results

Bossi and Lehner (2009) have come to multiple conclusions about tissue specific
PPI networks [10] (see Section 2.3). Their findings are based on a composite
network, which they constructed from various sources. We will refer to their
PPI network as Bossi (see Section 2.1.4). Bossi and Lehner constructed a tissue-
specific PPI network by annotating their composite PPI with expression data from
the Gene Atlas expression data set. In their study, Bossi and Lehner analyzed the
properties of tissue-specific and housekeeping proteins in their PPI graph.
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Emig and colleagues showed that some of the results from Bossi and Lehner
cease to remain true when using RNAseq expression data in place of the Gene
Atlas [21] [22].

In this section we will reconstruct Bossi and Lehner’s findings and evaluate
their validity on all 25 combinations of PPI networks and expression data sets,
including those originally used by Bossi and Lehner and by Emig et al. .

Interaction degrees of tissue specific proteins

The first reported finding by Bossi and Lehner is, that tissue-specific proteins
make fewer interactions than more widely expressed proteins. Bossi and Lehner
retain only those edges in their PPI, for which the interacting proteins are co-
expressed in at least one tissue. We will thus do the same in this analysis. We
further define the tissue specificity of a protein as the number of tissues in which
that protein is expressed. In Figure 5.4 we plot the protein interaction degree
against tissue specificity of the proteins for the Bossi PPI network and the Ge-
neAtlas expression data set. We observe that tissue-specific proteins make fewer
interactions than more widely expressed proteins. This is the same result that
Bossi and Lehner showed in their study.
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Figure 5.4: This shows the mean protein interaction degree for varying tissue specificity.
The x-Axis represents the number of tissues a protein is expressed in. The error bars
are one standard error. This data is based on the Bossi PPI network and the GeneAtlas
expression data.

This trend is, however, not observable for all combinations of PPI networks
and expression data sets. Consider for example the results when combining the
CCSB HI-2012 PPI network with the Human Protein Atlas expression data (Figure
5.5). With this particular combination, there is no clear trend observable. The
larger error bars are explainable by the relatively small size of this PPI (n =
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991 proteins). The previously shown combination of (Bossi with Gene Atlas) has
almost ten times that size (n = 9048).
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Figure 5.5: This shows the mean protein interaction degree for varying tissue specificity.
The x-Axis represents the number of tissues a protein is expressed in. The error bars are
one standard error. This data is based on the CCSB HI-2012 PPI network and the HPA
expression data.

However, for the STRING PPI network annotated by the Illumnia Body Map
RNA expression data, which has a total size of n = 15078, yet another trend
appears. The proteins that are expressed in most tissues still have a higher inter-
action degree than all other proteins, but the preceding trend appears to be inverse
to what Bossi and Lehner initially observed (Figure 5.6).
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Figure 5.6: This shows the mean protein interaction degree for varying tissue specificity.
The x-Axis represents the number of tissues a protein is expressed in. The error bars are
one standard error. This data is based on the STRING PPI network and the Illumnia Body
Map RNAseq expression data.

Plots for all combinations of PPI networks and expression data sets are printed
in the appendix (see Figure A.1).
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Next, we calculate the correlation between a protein’s interaction degree and
it’s tissue specificity in order to show the trend more systematically for all PPI and
expression dataset combinations. To test for this correlation, we use Spearman’s
correlation test. For all combinations of PPI networks and expression datasets, we
calculate Spearman’s ρ and the p-value for the H0 hypothesis of ρ being zero (see
Figure 5.7). In all cases we find a positive correlation (ρ > 0).

However, the majority of correlation coefficients are relatively small (ρ < 0.2
for 16 out of 25 combinations). In one case (HI-2012 combined with HPA All),
we observe no significant p-value (p > 0.05).

rho = 0.2 
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Figure 5.7: For each combination of PPI networks and expression data sets, Spearman’s
ρ and the according p-value is shown. Larger p-values are color coded in red.

Tissue-specific and housekeeping proteins

Prior work uses different definitions for whether a protein classifies as tissue-
specific (TS), housekeeping (HK) or neither.

Bossi and Lehner [10] fixed the definition of tissue specific to be all proteins
that are expressed in ≤ 10 out of the total of 79 tissues, corresponding to a per-
centage threshold of approximately 13%. As for defining housekeeping proteins,
Bossi and Lehner use various definitions and show that their results remain rela-
tively consistent across definitions. For example, they define housekeeping pro-
teins to be expressed in≥ 71 out of 79 tissues in one case and to be expressed in all
79/79 tissues in another case (corresponding to a percentage threshold of approx-
imately 89% or 100% respectively). Additionally, they use varying classification
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thresholds for the Gene Atlas expression data and consider expression data from
microarray and EST studies by Zhu et al. [66] for the definition of housekeeping.

The RNAseq data used by Emig and colleagues [21] consists of expression
data for merely 15 different tissues. They define a protein as tissue-specific if it
is expressed in at most two tissues and as housekeeping if it is expressed in at
least 14 out of 15 tissues. This corresponds to percentual thresholds of 13.3% and
100− 13.3%.

Since we want to compare the results across our collection of all PPI networks
and expression data sets, we define tissue-specific and housekeeping proteins ac-
cording to percentage thresholds as previously explained in Section 3.2.3: for a
threshold of t (e.g., 15%) we define those proteins as tissue-specific, which are
expressed in at most t percent of total tissues. Accordingly, we define all proteins
expressed in at least (100%− t) percent of total tissues as housekeeping.

Interactions partners of tissue-specific and housekeeping proteins

Bossi and Lehner further investigated the interaction partners of tissue-specific
and housekeeping proteins [10]. They found that most of the tissue-specific pro-
teins interact with at least one housekeeping protein. Furthermore, they found
that most of the housekeeping proteins interact directly with one or more non-
housekeeping proteins.

In order to evaluate these results for the collection of PPIs and expression
sets, we calculate the percentage of tissue-specific proteins that interact directly
with housekeeping proteins, i.e., the fraction of TS proteins that have at least one
interacting partner in HK. We find for various thresholds t ∈ {10, 12.5, 15, 20, 50}
that Bossi and Lehner’s findings remain true for most but not all combinations
of PPI networks and expression datasets (Figure 5.8). Especially for the high
confidence Y2H network HI-2012 combined with either the GeneAtlas or Human
Protein Atlas expression datasets, less than 20% (for at least t ≤ 15%) of tissue-
specific proteins interact with housekeeping proteins. However, the percentage of
TS proteins interacting with HK proteins is especially high for both RNAseq based
expression datasets combined with any PPI network, as well as for the STRING
PPI network combined with any expression dataset.

In Figure 5.9 we show how the percentage values depend on the threshold
parameter t. In this figure, each pair of PPIs and expression datasets is plotted
as a single line. We observe that the percentage of TS interacting with HK is
slightly increasing when the threshold parameter (and thus the size of the TS and
HK classes) is increased. However, no matter how the threshold t is chosen, the
results span a large range, and Bossi and Lehner’s findings remain valid for most,
but not all PPI and expression sets.

Next, we analyze the interactions of housekeeping proteins with non-housekeeping
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Figure 5.8: For each combination of PPI networks and expression data sets the percentage
of tissue specific (TS) proteins that interact directly with housekeeping (HK) proteins
is given for a threshold of t = 15% used for the classification into tissue specific and
housekeeping.
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Figure 5.9: The percentage of TS that interact directly with HK plotted for different
choices of the threshold parameter t. Each PPI and expression set combination is drawn
as a single line.

(non-HK) proteins. Non-housekeeping proteins are all those proteins which are
not in the housekeeping class. Bossi and Lehner’s results suggest that approxi-
mately 90% (and at least 80%) of housekeeping proteins interact with non-housekeeping
proteins. According to our findings, this is not always the case. Here we consider
proteins that are expressed in at least 90% of all tissues (t = 10%) as house-
keeping (Figure 5.10). Especially for the Illumnia Body Map expression data the
results differ strongly from what Bossi and Lehner found: paired with 4 of the
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5 PPI networks the achieved percentage results are below 50%. The highest per-
centages and thus the strongest results in favor of Bossi and Lehner’s findings are
achieved for the Gene Atlas expression dataset, the same dataset that Bossi and
Lehner used.
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Figure 5.10: For each combination of PPI networks and expression datasets the percent-
age of housekeeping (HK) proteins that interact directly with non-housekeeping (non-HK)
proteins is given for a threshold of t = 10% used for the classification of housekeeping
proteins.

Furthermore, we show the trends of these results for various values of the
threshold parameter t in Figure 5.11. No matter how t is chosen, the range of
the percentages of HK interacting with non-HK proteins spans almost all possible
values depending on which PPI and expression set is chosen. This shows that our
specific choice of t is irrelevant for the our results.

Putting prior results into perspective: random expectations

In this section we have so far shown, that prior results are not always reproducible
for all PPI networks and all expression datasets. In fact, the conclusions drawn in
those studies depend on the networks and expression sets chosen for analysis.

In the following, we are going one step further, and demonstrate that the ranges
of results achieved for the various combinations of PPI networks and expression
datasets depend mostly on the network’s degree distribution. Especially, the exact
assignments of the housekeeping and tissue-specific protein classes to proteins in
the network are (mostly) irrelevant for the reported results.

Expected number of interactions Let the PPI graph be given by G = (V,E)
with n = |V | and m = |E|. Further, let K ⊂ V be a random subset of fixed size
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Figure 5.11: The percentage of HK that interact directly with non HK plotted for different
choices of the threshold parameter t. Each PPI and expression set combination is drawn
as a single line.

k = |K|. For each node u ∈ V and given its degree du, we define the random
variable Xu to represent the number of outgoing edges from u that connect to any
node in K. Note that the value of Xu is bound by the degree du of u such that:

P (0 ≤ Xu ≤ du) = 1 (5.1)

Hypergeometric distribution We assume all edges (u, v) to be equally likely
for all v. This corresponds to a random graph model. Therefore, the probability
mass function for P (Xu = i) is given by the hypergeometric distribution, which
is used when sampling from a finite population without replacement. When sam-
pling from a population of sizeN with a total ofM successes, then the probability
of drawing exactly m successes in a sample of size n is given by:

P (X = m) =

(
M
m

)(
N−M
n−m

)(
N
n

) (5.2)

This equation is the probability mass function of the hypergeometric distribution.
In our case we are sampling all possible edges for a node u, thus the population

size is given by the number of nodes n = |V | or, when explicitly excluding self-
loops, by n − 1. We call a draw successful, if the edge connects to the subset
K ⊂ V , therefore the number of successes in the population is given by k = |K|
and the number of draws is given by the node’s degree du. We are interested in the
probability that there is any edge (u, v) connecting to K, i.e., the probability that
at least one edge from u connects to a node in K. This probability is given by:

P (Xu ≥ 1) = 1− P (Xu = 0) (5.3)
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the right side of which does not require the evaluation of the cumulative distribu-
tion function.

Note that this model depends on the degree of node u, but does not take the
degree distribution into account for the set K, since all target nodes are assumed
to be equally likely. This model is therefore not completely accurate, nevertheless
we show that it can be used to predict the outcome of the analysis of the previous
section.

We apply this model to calculate the expected number of tissue specific pro-
teins interacting with housekeeping proteins, as well as the expected number of
housekeeping proteins interacting with non-housekeeping proteins.

These problems can be formalized in the following manner: For two randomly
chosen subsets K ⊂ V and L ⊂ V with K ∩ L = ∅ and fixed sizes k = |K| and
l = |L|, what is the expected number of nodes in L that interact with nodes in K?
Using the previously stated probability of a single node u to interact with at least
one node from K, the expected number of nodes in L that interact with at least
one node in K is then given by:(∑

u∈V

P (Xu ≥ 1)

)
· l
n

(5.4)

Note that this sum further assumes, that the probability of each node connect-
ing into K is independent from each other, i.e., the degrees of the nodes in K are
again disregarded. However, we will show in the following that this model still
results in good predictions.

Tissue Specific proteins interacting with housekeeping proteins We set K
to be the set of all housekeeping proteins and L respectively to the set of tissue
specific proteins. We then use equation 5.4 to calculate the expected number of
tissue-specific proteins that interact with housekeeping proteins.

Note that according to the above formulation, the calculated expected number
of proteins will only depend on the degree distribution of the PPI network and on
the number of proteins inside the protein classes (i.e., the number of tissue specific
and the number of housekeeping proteins). Particularly, it does not depend on
the actual mapping of these labels to nodes in the network or the actual network
structure.

We use the same threshold t = 15% as used before to determine the sizes of
K and L for each expression dataset and then use the degree distribution of each
PPI network to calculate the expected number nodes in L that interact with nodes
in K. We plot the resulting percentages for all combinations of PPI networks and
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expression datasets in Figure 5.12. The results are strikingly similar to the results
found by Bossi and Lehner, that we reproduced before (Figure 5.8).
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92.9 % 78.2 % 92.3 %82.7 % 82.6 %
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Figure 5.12: For each combination of PPI networks and expression data sets the expected
percentage of tissue specific (TS) proteins that interact directly with housekeeping (HK)
proteins is given for a threshold of t = 15% used for the classification into tissue specific
and housekeeping. The expectation is calculated by only taking the network’s degree
distribution and the number of tissue specific and housekeeping proteins into account.

To show the similarity between the expected and the actually observed data,
we plot these two results against each other (figure 5.13). This figure compares
the actually observed percentages with the percentages that are predicted by our
model. Each combination of PPI networks and expression datasets is represented
by a single point. The actual percentage of TS interacting with HK is used as the
x-coordinate and the predicted, expected percentage is the y-coordinate. Given
a perfect model, the points would all lie exactly on the diagonal and give rise to
a perfect correlation of ρ = 1.0. Our simplified model slightly over estimates
the interaction percentages, however the trend is still accurately predicted. The
Pearson correlation coefficient between the estimated and real values is ρ = 0.933
when using a threshold parameter of t = 15%.

We have previously shown that tissue-specific proteins have lower interaction
degrees than housekeeping proteins (see above). Our model does not take this into
account, but slightly overestimated the percentage of interactions of tissue-specific
proteins and housekeeping proteins.

We show how the predicted results change by accounting for the degree dis-
tribution of tissue-specific proteins in our prior analysis. Figure 5.14 shows that
this leads to a better fit, especially the expected percentages are no longer overall
bigger than the actual values. The correlation coefficient increases to ρ = 0.954
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Figure 5.13: The calculated expected percentage of tissue specific proteins interacting
with housekeeping proteins (y-axis) are plotted against the actually observed percentage
(x-axis). The threshold for classification into tissue specific and housekeeping is set to
t = 15%.
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Figure 5.14: The calculated expected percentage of tissue specific proteins interacting
with housekeeping proteins (y-axis) are plotted against the actually observed percentage
(x-axis). The degree distribution of the tissue specific proteins are taken into account
for calculating the probabilities. The threshold for classification into tissue specific and
housekeeping is set to t = 15%.

Housekeeping proteins interacting with non-housekeeping proteins We re-
peat the same analysis for finding the expected percentage of housekeeping pro-
teins that interact with non-housekeeping proteins. The results are very similar to
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what we found for the interaction between tissue-specific and housekeeping pro-
teins (Figure 5.15). We find that the Pearson correlation is even higher for this
case with ρ = 0.975. Additionally, the predicted/expected results are closer to the
actual results than previously seen for the tissue specific interactions.
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Figure 5.15: The calculated expected percentage of housekeeping proteins interacting
with non-housekeeping proteins (y-axis) are plotted against the actually observed per-
centage (x-axis). The threshold for classification into tissue specific and housekeeping is
set to t = 10%.

Centrality of housekeeping genes

Next, we are going to consider the importance of housekeeping and tissue-specific
genes in the PPI network topology. We use centrality measures (see 1.3.3) to quan-
titatively characterize proteins in the PPI networks according to their importance
in the network.

Lin et al. (2009) [39] analyzed tissue-specific PPI networks and found that
housekeeping proteins have significantly higher centrality than other proteins for
both the degree centrality and betweenness centrality. Since the degree centrality
refers to nothing else but the degree of a node, this analysis result is identical
to the first result found by Bossi and Lehner, which we showed earlier in this
chapter. We have already evaluated this result and also found that housekeeping
proteins have significantly higher interaction degrees for most PPIs and expression
datasets. Therefore, we will focus on the betweenness centrality of housekeeping
and tissue-specific proteins in this section.

First, we consider the betweenness of housekeeping proteins in the full PPI
networks. Throughout this analysis, we will use a threshold of t = 10% for clas-
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sification of genes into housekeeping and tissue-specific. Given the betweenness
centrality of all proteins in a network, we calculate the differences of the mean and
their significances for housekeeping proteins versus randomly sampled proteins.
We closely follow the analysis procedure by Lin et al. (2009). We then calculate
the z-score of the mean of housekeeping proteins within the sets of randomly sam-
pled proteins. The z-score is defined as the distance from the mean in units of the
standard deviation. Therefore a z-score over 1.96 or below −1.96 would signify a
significant difference with p = 0.05.
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Figure 5.16: The z-scores of the betweenness of housekeeping proteins compared to
randomly sampled sets of proteins from the whole population of proteins.

We find that housekeeping proteins have significantly higher betweenness cen-
tralities for many of the PPI and expression dataset combinations (19 out of 25
with z > 1.96σ and thus p < 0.05, see figure 5.16). The remaining 6/25 com-
binations are all lie within the 95% confidence intervals, and only two (HI-2012
combined with the Illumina Body Map or Gene Atlas) have z-scores smaller than
zero.

For tissue-specific proteins, we find that all z-scores are negative (see figure
5.17). However, only 9/25 of combinations result in significantly smaller be-
tweenness centrality scores (z < −1.96 ⇒ p < 0.05). Therefore, most cases
show no significant differences, despite the apparent trend.

We have so far analyzed the betweenness centralities of the whole PPI net-
work. Next, we will analyze the betweenness scores of housekeeping and tissue-
specific proteins in all tissue-specific subgraphs. We now have to consider the
betweenness scores of proteins for each tissue, each of which generates a differ-
ent subgraph. We therefore show the ranges of resulting z-scores and their mean
(see Figure 5.18). Note that this mean does not necessarily have any statistical
meaning, but simply helps to demonstrate the distribution of z-scores. We find for
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Figure 5.17: The z-scores of the betweenness of tissue-specific proteins compared to
randomly sampled sets of proteins from the whole population of proteins.

housekeeping genes (Figure 5.18) that a majority of z-scores is bigger than zero,
yet we observe less overall significant differences. Merely 6 out of 25 PPI and ex-
pression set combinations yield exclusively significant differences in betweenness
scores in all of their specific subnetworks (the minimum of the range is ≥ 1.96).
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Figure 5.18: The range and mean of z-scores of the betweenness of housekeeping proteins
compared to randomly sampled sets of proteins for the specific subnetworks for all tissues.

The betweenness centralities of tissue-specific proteins in the tissue-specific
subnetworks show little deviation from the means of randomly sampled proteins
(see Figure 5.19). In all but three cases, none of the z-scores are significant. In
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the other three cases, only a subset of the subgraphs have significantly smaller
betweenness centralities.
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Figure 5.19: The range and mean of z-scores of the betweenness of tissue-specific pro-
teins compared to randomly sampled sets of proteins for the specific subnetworks for all
tissues.

Overall, we observe in accordance with the study by Lin et al. (2009), that
housekeeping proteins tend to have higher betweenness centralities than randomly
selected proteins. Additionally, tissue-specific proteins tend to have smaller be-
tweenness centralities than observed by random. However, these results are not
significant for many combinations of PPIs and expression datasets.

5.2.2 Discussion
Previous results regarding the interactions between tissue-specific and housekeep-
ing proteins have been in disagreement [10] [21] [22]. These studies have thus
come to opposing conclusions about the role of tissue-specific proteins and their
interactions in the specialization of cells. However, these studies have only looked
at one PPI network and used two different expression datasets for their analysis.
We have shown that the results depend in large part on the PPI and expression
dataset analyzed. Moreover, we demonstrated that the contradicting results about
the interaction partners of TS and HK proteins do not stem from the actual identity
of tissue-specific and housekeeping proteins in the network, but are predictable
using a simple random model. We argue that this demonstrates an impossibil-
ity to reject the null hypothesis that there is a significant difference between the
interactions of TS or HK proteins and randomly chosen proteins.
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Furthermore, we have shown that the results by Lin et al. (2009) [39] are repro-
ducible for only a subset of all PPI networks and expression datasets. Even though
only some cases result in significant higher betweenness centrality for housekeep-
ing proteins, we observe a trend of housekeeping proteins taking more central
positions in the network. Tissue-specific proteins tend to be less central than
expected by random. However, for the tissue-specific subnetworks, TS proteins
become less distinguishable from randomly selected proteins. Interestingly, the
betweenness centrality of HK proteins remains more conserved in tissue-specific
subnetworks.

Our results put prior biological conclusions into perspective. We argue, that
the previously observed properties of tissue-specific and housekeeping proteins
and the conclusions drawn by those studies do not necessarily hold a biological
meaning, since the choice of data sources largely determines the outcome of the
analysis.

5.3 Gained importance of tissue-specific proteins

So far we have found that tissue-specific proteins show a tendency towards less
important roles in the interaction networks. However, are there proteins that have
gained in importance by evolving to be tissue-specific? If yes, which biological
processes are these proteins involved in? To find out, we analyze the centrality
of proteins in the PPI graphs and compare it with all the according tissue specific
subgraphs. We continue to use a classification threshold of t = 10% for the
classification of proteins into HK and TS.

5.3.1 Analysis

First we identify tissue-specific proteins that have a higher betweenness centrality
score in a tissue-specific subnetworks than in the full PPI network. For these we
calculate the factor of increase in betweenness. We do this for all combinations
of PPI networks and expression datasets. In order to achieve a higher reliability
of our results, we merge the proteins identified in all those combinations and keep
only those resulting from at least two different PPI networks and at least two
different expression data sets. Therefore, results that stem from only one PPI but
are consistent across different expression datasets will be filtered out, since at least
two different PPI networks have to support the result.

This procedure identifies 122 tissue-specific proteins that show an increase in
their betweenness centrality score in the tissue-specific subnetworks compared to
the global PPI network. We further reduce this number by considering only those
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proteins for which the betweenness increases by at least a factor of two, which
leaves a total of 39 proteins.

We use functional annotation and enrichment analysis on the previously iden-
tified proteins to determine which biological processes these proteins are involved
in, and if multiple of these proteins are involved in similar processes. To facilitate
this analysis we use DAVID (Database for Annotation, Visualization and Inte-
grated Discovery) [34] [35] and concentrate on the GO (Gene Ontology) terms of
the biological process (BP) namespace (see also Section 3.6).

GO Term Term Name Gene Count P-Value
GO:0032501 multicellular organismal process 20 5.93E-03
GO:0048731 system development 16 4.33E-04
GO:0048856 anatomical structure development 16 1.05E-03
GO:0048513 organ development 13 1.12E-03
GO:0007275 multicellular organismal development 16 3.86E-03
GO:0032502 developmental process 16 9.65E-03
GO:0006810 transport 14 1.30E-02
GO:0051234 establishment of localization 14 1.41E-02
GO:0051179 localization 14 3.57E-02

Table 5.3: Significantly enriched GO-Terms in tissue-specific proteins with increased be-
tweenness centrality in their respective tissue-specific subnetwork PPIs. The Gene Count
column gives the number of genes that are enriched with the given GO Term as returned
by DAVID.

5.3.2 Results

DAVID identifies 21 GO-terms that are significantly enriched (p < 0.05), nine
of which have a gene count over 30% of the total number of genes used in the
functional annotation (see Table 5.3). We group these terms into two groups.
The terms within these groups have most genes in common, where the first group
shares 13 genes in all its terms and the terms of the second group share all 14
genes.

The first group consists of terms relating to the developmental process for
anatomical structure, organ development and multicellular organismal develop-
ment. The terms of the second group relate to protein transport and protein local-
ization in the cell.

All significant GO terms are printed in the appendix in table A.4.
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5.3.3 Discussion
We have identified two groups of tissue-specific genes which have more important
positions in their tissue-specific networks than in the global PPI networks. The
first group of genes is functionally enriched in developmental processes, which
might hint that our method successfully identifies genes which hold important
roles in multicellular specialization. These genes may have an important role
in the evolution towards multicellular organisms, since these genes profit from
cellular specialization by taking a more central role in the cellular interactions.

5.4 Graph clustering for identification of functional
modules

5.4.1 Different clustering algorithms
We use the Parallel Label Propagation (PLP) and the Parallel Louvain Method
(PLM) for clustering in all PPI networks (see Sections 2.4 and 3.7.2).

In Figure 5.20, we show the sizes of the clusters as the result of the different
clustering algorithms and parameters for the STRING PPI. The PLP algorithm
finds a large cluster of over 12 thousand proteins, which is a majority of all pro-
teins in the network.
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Figure 5.20: The sizes of clusters as identified by the different clustering algorithms and
parameter settings for the STRING PPI.

When using the PLM algorithm for clustering, the sizes of the clusters is de-
termined by the gamma parameter. For the default value of gamma=1.0, the mod-
ularity of the clustering is maximized. For this parameter setting, we find that,
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the largest cluster still contains over 3000 proteins and eight more clusters of size
bigger than 500 are returned. Both algorithms PLP and PLM with default param-
eter settings return clusters which are too big for our purpose, since our goal is
to identify functional meaningful clusters/modules. In our opinion, a cluster that
contains a large fraction of all proteins, most likely can not lead to any specific,
meaningful results. Since the PLM method is hierarchical in nature, we choose
a larger value of gamma in order to get more fine grained clusters. Figure 5.20
shows an overview of the achieved cluster sizes for the different parameter values
γ ∈ {1.0, 5.0, 10.0, 50.0, 100.0}.

For further analysis of clusters, we choose and restrict ourselves to the PLM
algorithm with parameter γ = 50.0, because for this choice there are no clusters
containing more than 100 proteins (thus all clusters have size < 1% of proteins)
and fewer than 10% of proteins are contained in clusters with sizes smaller than 4.
The latter being of importance, since we only use clusters with size greater than 3
within the upcoming analysis.

5.4.2 Identifying functional modules

Functional modules in the PPI graph are clusters of proteins which are function-
ally or semantically related. We use the clustering algorithms implemented in
NetworKit to find clusters and then use the BPScore scoring method to evaluate
the functional and semantic similarity of the proteins in each cluster. In the fol-
lowing we show the analysis methods and results for clustering in the full PPIs
and compare those to clusters obtained in tissue-specific subnetworks.

Global PPIs

First, we use the PLM clustering algorithm with γ = 50.0 on the different PPI
networks. As described in Section 3.7.2, we consider the top 20% of clusters
ranked by their modularity as “good” clusters. In Table 5.4 we show the clustering
results for the five PPI networks.

We score all resulting clusters using the BPScore explained in Section 3.6.
Remember that this score states how much more similar (in terms of semantic
similarity using GO-Terms) proteins within a given cluster are compared to all
proteins. A positive value means that the proteins are more similar, while a neg-
ative score means that the proteins are less similar to each other than they are to
the set of all proteins.

We apply a student’s t-test to test for significant differences of BPScores be-
tween the top 20% of clusters (i.e., the “good” clusters) and the remaining clusters.
We observe that the top 20% of clusters score significantly higher in their BPScore
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PPI # Cl. Avg. size BP(+20%) BP(−80%) greater? P-value
Bossi 643 13.78 0.27 0.15 TRUE < 1.7 · 10−18

STRING 860 16.11 0.28 0.14 TRUE < 6.2 · 10−24

IMEx 936 10.80 0.18 0.09 TRUE < 5.3 · 10−13

Havugimana 308 7.42 0.26 0.11 TRUE < 4.3 · 10−7

HI-2012 459 8.21 0.06 0.08 FALSE 0.29

Table 5.4: Result of clustering with PLM using γ = 50.0. Clusters are ranked accord-
ing to their modularity and scored with BPScore. The columns show (2) the number of
clusters, (3) the average size per cluster, (4) the average BPScore of the top 20% clusters
ranked by their modularity, (5) the average BPScore of the remaining bottom 80%, (6)
whether the “good” top 20% clusters have a higher average BPScore and finally (7) the
significance of the difference of means of (4) and (5) using a t-test.

for 4/5 PPIs. For the HI-2012 the “good” clusters do not score higher, however
no significant p-value is reached for this result.

Overall, these results illustrate that by using this clustering algorithm and by
choosing the high modularity clusters, we can identify potential functional mod-
ules.

Tissue-specific networks

We run the same clustering algorithm on all tissue-specific subnetworks for all
combinations of PPIs and expression datasets. For each tissue-specific subnet-
work we test whether the top 20% of clusters have higher BPScores than the re-
maining clusters using the t-test. We summarize the results in Figure 5.21, where
we show the percentage of tissues in which the “good” clusters have significant
(p < 0.05) higher BPScores.

We observe similar results as seen for the whole PPIs. Overall, in almost all
tissues (> 97.6%), the top clusters score significantly higher than bottom 80% for
a majority of PPI and expression data combinations (16/25). The combinations
where this does not remain true are mostly restricted to the HI-2012 network and
to the HPA expression dataset. This agrees with the results on the whole PPI
networks above.

Tissue-specific versus full PPI networks

Next, we investigate whether clustering in tissue-specific subnetworks results in
more functionally related (higher scoring) clusters compared to the clustering of
the full PPI networks. For a given pair of a PPI and an expression dataset, we
create all the tissue-specific subnetworks and the full PPI network. We run the
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Figure 5.21: For each combination of PPIs and expression datasets, this figure shows
the percentage of tissues for which the top 20% clusters have significant higher BPScores
(p < 0.05) than the other 80% of clusters.

PLM clustering algorithm and then take the top 20% (ranked by the modularity)
of clusters in each network. We then compare the BPScore of the clusters of each
tissue-specific subnetwork with the clusters of the full PPI network. We use a
t-test to determine if the clusters in the specific subnetworks score significantly
lower or higher than the clusters of the full PPI network. Figure 5.22 gives an
overview of the results. This figure shows the percentage of tissues in which the
clusters exhibit significantly lower/higher BPScores (p < 0.05).
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Figure 5.22: For each combination of PPIs and expression datasets, this figure shows the
percentages of tissues for which the top 20% clusters in the tissue-specific subnetworks
have significant lower/higher BPScores (p < 0.05) than the top 20% of clusters in the
corresponding full PPI graph.
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For a majority of cases (16/25), we observe no significant differences in any
tissue to either direction (0%/0%). For the Gene Atlas, we find that the clusters
identified in many tissue-specific subnetworks exhibit significantly lower scores
than clusters found in the according full PPIs. Only for the HI-2012 PPI, the clus-
tering identifies higher scoring clusters in some of the tissue-specific subnetworks.

Edge weighting

We defined two methods for assigning weights to the edges of the PPI based on the
expression data of the interacting proteins (see Section 3.7.4). Here, we evaluate
whether clustering the weighted graphs yield better results compared to using the
unweighted, full PPI graph.

For this analysis, we again choose the top 20% (ranked by modularity) of clus-
ters in the clusterings of both the edge-weighted and the global PPI graphs. We
compare the BPScores of the clusters in these two graphs and run a student’s t-test
in order to test for significant differences in the mean of the cluster’s scores. We
run the clustering, scoring and tests for all combinations of PPIs and expression
datasets.

Correlation weight Using the correlation weights, we find no significant differ-
ences in means for all of the tissue-specific PPIs. Therefore, this method does not
produce any better results than using the unweighted, full PPI graphs. We show
the full results including all p-values in the appendix in table A.5.

Co-expression weights We observe similar results for the co-expression weighted
networks. For all but two combinations of PPIs and expression data sets, we find
no significant differences between the means of the BPScores of the clusters. For
two instances however, we find significant differences between the BPScores of
the clusters in the weighted graph compared to the corresponding non-weighted
PPI graph. We show these two instances in Table 5.5. We further observe, that for
one of the instances the weighted graph has a significantly higher score, while for
the second instance a significantly lower score is reached. A table of all results is
printed in table A.6.

PPI Expression BP(edge-graph) BP(global) P-value
STRING Gene Atlas 0.26 0.29 0.033
HI-2012 Gene Atlas 0.15 0.07 0.050

Table 5.5: Co-expression weighted PPIs for which we find significantly different BP-
Scores of the clusters in the weighted graph compared to the corresponding non-weighted
(global) PPI graph.
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5.4.3 Discussion
We have used clustering algorithms with the goal of identifying functional mod-
ules in PPI networks. We evaluated the clusters using the GO-Term based BP-
Score scoring method. Contrary to our expectation, we found that clustering in
the more specific tissue-specific subnetworks did not generally result in higher
scoring clusters. Thus, we were unable to identify more specific functional and
semantically related modules in the specific subgraphs with our approach.

We furthermore tried a hybrid method, adding weights to edges in the PPI
graphs based on the expression patterns of the interacting proteins. For this method
as well, we were also unable to achieve better clustering results.

Overall, we were not able to beat the clustering results achieved by purely
looking at the full PPI graphs. Adding tissue-specific expression data, did not
yield any benefit.



Chapter 6

Conclusion and future work

In this chapter, we summarize our work with a focus on the results achieved and
then outline future work.

6.1 Summary and conclusions

In this thesis, we analyzed human tissue and cell-type specific protein-protein
interaction networks. For our analysis, we chose multiple different PPIs and pro-
tein expression datasets. In order to create tissue-specific PPIs, we combined
those PPIs with the protein expression data to create a total of 25 different tissue-
specific PPIs. Each of these was further subdivided into subgraphs for each tissue
or cell-type.

We implemented an analysis pipeline for importing and converting all source
datasets, and the subsequent automated analysis of the tissue-specific PPIs. We
calculated the statistical properties of the expression datasets and the PPI net-
works. Among others, we demonstrated that the degree distributions of the PPIs
most closely follow a power-law distribution. Furthermore, basic properties of the
tissue-specific PPI networks were laid out.

For the analysis of tissue-specific PPI graphs, we developed and implemented
custom versions of common analysis algorithms. These operate directly on our
tissue-specific graph representation and run the analysis on the subgraphs for all
tissues simultaneously. We adapted and implemented algorithms for the local
clustering coefficient, the betweenness centrality and a version of the Parallel
Label Propagation (PLP) clustering algorithm. We demonstrated substantial im-
provements of runtime for the clustering coefficients computation and minor im-
provements in the parallel runtime of the betweenness centrality. Our adaption
of the PLP algorithm performed worse than the alternative of running the orig-
inal algorithm succinctly on separately created graphs. Hence, we could report

79
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improvements only for two but not all algorithms.
We then re-evaluated the results of multiple prior studies on our collection

of 25 tissue-specific PPI networks. We demonstrated, that the results of Bossi
and Lehner (2009), Emig et al. (2011) and Lin et al. (2009) all depend on the
exact combination of PPI network and expression dataset chosen for the analysis.
We could not reproduce their results for all of these combinations. Furthermore,
we gave a statistical model for the interactions between two randomly chosen
groups or proteins in PPI graphs and showed that this model predicts the results
from Bossi and Lehner to close accuracy. We conclude, that a null hypothesis
of no significant differences between tissue-specific/housekeeping and randomly
chosen proteins can not be rejected. Therefore, we argue that the conclusions
drawn in their study are not necessarily biologically meaningful.

Next, we analyzed proteins in tissue-specific subnetworks and looked at those
proteins which gained in centrality in the subgraphs compared to their position in
the full PPI networks. We found that the proteins we identified with our method
are functionally enriched in GO-Terms relating to developmental processes. We
conclude that this method might prove useful in identification of proteins which
have important roles in cellular-specialization and the developmental process.

Finally, we used clustering and community-detection algorithms from the Net-
worKit toolkit to identify tissue-specific functional modules/clusters. We ran the
clustering methods on the full PPI graphs, all tissue-specific subnetworks and on
weighted graphs, which we constructed by adding edge weights to PPIs based
on the expression profiles of the interacting proteins. We hoped to be able to
identify clusters of more specific and more functionally related proteins in the
tissue-specific subnetworks or the weighted graphs. However, for neither of these
approaches, were we able to demonstrate better results than those we achieved by
clustering the full PPI graphs.

6.2 Future work
In this final section, we elaborate on possible extensions and future directions of
the research conducted for this thesis.

For the analysis of gained centrality of proteins in tissue-specific networks, we
used the betweenness centrality measure. It might be worth exploring other mea-
sures of node centrality in the tissue-specific graphs. Comparing the results from
these alternative centrality measures might provide further insight into proteins in-
volved in cellular specialization. Furthermore, algorithms to calculate other cen-
trality measures on the tissue-specific graph representation could be developed,
implemented and evaluated.

The NetworKit toolkit is still under active development, and since the start of
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this thesis additional clustering algorithms have been implemented into its frame-
work. It could be interesting to run those algorithms on the tissue-specific graphs,
which might yield better identification of functional modules in these graphs.

We observed that prior results and conclusions depend on the datasets which
are used for the analysis. Current PPIs and expression datasets do not yet seem to
agree with all their proposed protein interactions and protein expression profiles.
It seems valuable to extend the analysis pipeline by adding implementations for
the reproduction and automated re-evaluation of more previous research results.
Adding more PPIs and expression datasets whenever new, more reliable data be-
comes available, would enable constant re-evaluation of prior results and conclu-
sions. It might turn out to be helpful for the community, if this analysis pipeline
and its results would be made publicly available in a format which enables easy
navigation of up-to-date version of all results.
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Figure A.1: For all PPIs and expression datasets, this shows the mean protein interaction
degree for varying tissue specificity. The x-Axis represents the number of tissues a protein
is expressed in. The error bars are one standard error.
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PPI Expression NetworKit Neighbor Comb. Tissue expr.
STRING Gene Atlas 118.76 s 8.31 s 2.32 s
STRING HPA All 25.76 s 6.86 s 0.49 s
STRING RNAseq Atlas 23.53 s 3.88 s 3.33 s
Bossi Gene Atlas 16.42 s 3.40 s 0.37 s
IMEx Gene Atlas 6.65 s 0.95 s 0.07 s
STRING Body Map 4.48 s 2.16 s 0.31 s
Bossi HPA All 3.90 s 1.19 s 0.12 s
STRING HPA 2.93 s 0.87 s 0.06 s
Bossi RNAseq Atlas 2.26 s 0.89 s 0.25 s
IMEx HPA All 1.85 s 0.56 s 0.03 s
Bossi Body Map 0.97 s 0.49 s 0.11 s
IMEx RNAseq Atlas 0.91 s 0.32 s 0.06 s
Havugimana Gene Atlas 0.86 s 0.35 s 0.03 s
HI-2012 Gene Atlas 0.38 s 0.10 s 0.01 s
Bossi HPA 0.30 s 0.12 s 0.01 s
IMEx Body Map 0.28 s 0.15 s 0.02 s
IMEx HPA 0.19 s 0.07 s 0.00 s
Havugimana HPA All 0.17 s 0.07 s 0.01 s
HI-2012 HPA All 0.14 s 0.05 s 0.00 s
Havugimana RNAseq Atlas 0.13 s 0.07 s 0.02 s
HI-2012 RNAseq Atlas 0.11 s 0.02 s 0.01 s
Havugimana Body Map 0.06 s 0.06 s 0.01 s
Havugimana HPA 0.02 s 0.03 s 0.00 s
HI-2012 Body Map 0.01 s 0.01 s 0.00 s
HI-2012 HPA 0.01 s 0.01 s 0.00 s

Table A.1: Benchmark results for different algorithms to compute the local clustering
coefficients for all tissue-specific subnetworks of each combination of PPI and expression
dataset.
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PPI Expression Create Subgraphs Tissue Vectors
STRING HPA All 316.33 s 320.72 s
STRING RNAseq Atlas 111.10 s 131.62 s
STRING Gene Atlas 106.09 s 67.57 s
STRING Body Map 103.89 s 92.18 s
IMEx HPA All 78.73 s 76.43 s
Bossi HPA All 69.47 s 68.33 s
IMEx RNAseq Atlas 36.82 s 35.12 s
IMEx Gene Atlas 33.17 s 20.78 s
Bossi RNAseq Atlas 33.03 s 32.35 s
Bossi Gene Atlas 32.73 s 23.13 s
IMEx Body Map 31.78 s 28.04 s
Bossi Body Map 27.12 s 24.06 s
STRING HPA 15.61 s 17.22 s
Havugimana HPA All 4.71 s 4.88 s
Bossi HPA 4.71 s 5.06 s
IMEx HPA 4.62 s 4.97 s
HI-2012 HPA All 4.57 s 4.78 s
Havugimana Gene Atlas 3.61 s 3.91 s
Havugimana RNAseq Atlas 2.82 s 2.77 s
HI-2012 RNAseq Atlas 2.44 s 2.35 s
Havugimana Body Map 2.16 s 2.05 s
HI-2012 Gene Atlas 1.78 s 0.57 s
HI-2012 Body Map 1.43 s 1.40 s
Havugimana HPA 0.62 s 0.65 s
HI-2012 HPA 0.10 s 0.09

Table A.2: Benchmark results of the two different methods for computing the between-
ness centrality for all tissues of the tissue-specific networks. These are the results when
running the OpenMP parallel version of the algorithms on 4 cores and threads.
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PPI Expression NetworKit TS Representation
STRING Gene Atlas 2.569 s 6.626 s
STRING HPA All 0.808 s 4.464 s
Bossi Gene Atlas 0.575 s 1.129 s
IMEx Gene Atlas 0.411 s 1.027 s
STRING RNAseq Atlas 0.390 s 0.840 s
Bossi HPA All 0.236 s 0.864 s
IMEx HPA All 0.198 s 0.534 s
STRING HPA 0.153 s 0.585 s
STRING Body Map 0.122 s 0.204 s
Havugimana Gene Atlas 0.087 s 0.179 s
Bossi RNAseq Atlas 0.073 s 0.166 s
HI-2012 Gene Atlas 0.071 s 0.101 s
HI-2012 HPA All 0.064 s 0.111 s
Bossi HPA 0.061 s 0.152 s
IMEx RNAseq Atlas 0.054 s 0.091 s
IMEx HPA 0.047 s 0.089 s
Havugimana HPA All 0.046 s 0.099 s
Bossi Body Map 0.044 s 0.066 s
IMEx Body Map 0.031 s 0.046 s
HI-2012 RNAseq Atlas 0.018 s 0.039 s
Havugimana HPA 0.018 s 0.016 s
Havugimana RNAseq Atlas 0.015 s 0.028 s
Havugimana Body Map 0.011 s 0.011 s
HI-2012 Body Map 0.010 s 0.013 s
HI-2012 HPA 0.010 s 0.007 s

Table A.3: Benchmark results for the adapted PLP algorithm working directly on the
tissue-specific graph representation versus the original NetworKit implementation which
is run on each tissue separately.
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GO Term Term Name Count P-Value
GO:0048731 system development 16 4.33E-04
GO:0048856 anatomical structure development 16 1.05E-03
GO:0048513 organ development 13 1.12E-03
GO:0044057 regulation of system process 6 1.19E-03
GO:0007155 cell adhesion 8 2.00E-03
GO:0022610 biological adhesion 8 2.02E-03
GO:0007275 multicellular organismal development 16 3.86E-03
GO:0048168 regulation of neuronal synaptic plasticity 3 3.98E-03
GO:0050804 regulation of synaptic transmission 4 5.35E-03
GO:0032501 multicellular organismal process 20 5.93E-03
GO:0051969 regulation of transmission of nerve impulse 4 6.64E-03
GO:0031644 regulation of neurological system process 4 7.41E-03
GO:0032502 developmental process 16 9.65E-03
GO:0051239 regulation of multicellular organismal process 8 9.90E-03
GO:0048167 regulation of synaptic plasticity 3 1.22E-02
GO:0006810 transport 14 1.30E-02
GO:0031099 regeneration 3 1.40E-02
GO:0051234 establishment of localization 14 1.41E-02
GO:0065008 regulation of biological quality 9 3.36E-02
GO:0051179 localization 14 3.57E-02
GO:0015669 gas transport 2 4.62E-02

Table A.4: Significantly enriched GO-Terms in tissue-specific proteins with increased be-
tweenness centrality in their respective tissue-specific subnetwork PPIs. The Gene Count
column gives the number of genes that are enriched with the given GO Term as returned
by DAVID.
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PPI Expression BP(edge-graph) BP(global) P-value
Bossi Body Map 0.26 0.27 0.73
Bossi Gene Atlas 0.26 0.27 0.79
Bossi RNAseq Atlas 0.25 0.27 0.20
Bossi HPA 0.25 0.27 0.43
Bossi HPA All 0.24 0.26 0.48
STRING Body Map 0.31 0.31 0.69
STRING Gene Atlas 0.30 0.29 0.78
STRING RNAseq Atlas 0.28 0.28 0.95
STRING HPA 0.33 0.33 0.84
STRING HPA All 0.28 0.28 0.99
IMEx Body Map 0.18 0.18 0.91
IMEx Gene Atlas 0.18 0.19 0.69
IMEx RNAseq Atlas 0.18 0.19 0.64
IMEx HPA 0.19 0.19 0.99
IMEx HPA All 0.15 0.16 0.63
Havugimana Body Map 0.24 0.22 0.62
Havugimana Gene Atlas 0.27 0.26 0.91
Havugimana RNAseq Atlas 0.26 0.27 0.80
Havugimana HPA 0.36 0.32 0.63
Havugimana HPA All 0.26 0.28 0.65
HI-2012 Body Map 0.09 0.10 0.79
HI-2012 Gene Atlas 0.07 0.07 0.82
HI-2012 RNAseq Atlas 0.07 0.07 0.94
HI-2012 HPA 0.06 0.13 0.51
HI-2012 HPA All 0.07 0.05 0.46

Table A.5: The mean BPScores of top 20% of clusters identified in the full PPI graph
and the graph where edges are weighted with the correlation of the expression of the
interacting proteins. The P-values are the significance levels of the two-sided student’s
t-test testing for a difference in means. None of the means are significantly different.
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PPI Expression BP(edge-graph) BP(global) P-value
Bossi Body Map 0.26 0.27 0.92
Bossi Gene Atlas 0.23 0.27 0.08
Bossi RNAseq Atlas 0.25 0.27 0.21
Bossi HPA 0.24 0.27 0.42
Bossi HPA All 0.22 0.26 0.10
STRING Body Map 0.31 0.31 0.87
STRING Gene Atlas 0.26 0.29 0.03
STRING RNAseq Atlas 0.27 0.28 0.65
STRING HPA 0.31 0.33 0.44
STRING HPA All 0.27 0.28 0.43
IMEx Body Map 0.18 0.18 1.00
IMEx Gene Atlas 0.16 0.19 0.08
IMEx RNAseq Atlas 0.17 0.19 0.29
IMEx HPA 0.18 0.19 0.62
IMEx HPA All 0.14 0.16 0.47
Havugimana Body Map 0.24 0.22 0.69
Havugimana Gene Atlas 0.28 0.26 0.72
Havugimana RNAseq Atlas 0.26 0.27 0.78
Havugimana HPA 0.33 0.32 0.84
Havugimana HPA All 0.26 0.28 0.62
HI-2012 Body Map 0.09 0.10 0.80
HI-2012 Gene Atlas 0.15 0.07 0.05
HI-2012 RNAseq Atlas 0.09 0.07 0.29
HI-2012 HPA 0.03 0.13 0.23
HI-2012 HPA All 0.08 0.05 0.22

Table A.6: The mean BPScores of top 20% of clusters identified in the full PPI graph
and the graph where edges are weighted with the number of tissues in which the two
interacting proteins are btoh expressed in (normalized by the maximum number of tissues
each protein is expressed in). The P-values are the significance levels of the two-sided
student’s t-test testing for a difference in means. None of the means are significantly
different.
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[23] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathemat-
icae Debrecen, 6:290–297, 1959.

[24] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci, 5:17–61, 1960.

[25] Andrea Franceschini, Damian Szklarczyk, Sune Frankild, Michael Kuhn,
Milan Simonovic, Alexander Roth, Jianyi Lin, Pablo Minguez, Peer Bork,
Christian von Mering, et al. String v9. 1: protein-protein interaction net-
works, with increased coverage and integration. Nucleic acids research,
41(D1):D808–D815, 2013.

[26] Gourab Ghoshal and Albert-László Barabási. Ranking stability and super-
stable nodes in complex networks. Nature communications, 2:394, 2011.

[27] E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics,
30(4):1141–1144, 12 1959. http://dx.doi.org/10.1214/aoms/
1177706098.

[28] Johannes Goll, Seesandra V Rajagopala, Shen C Shiau, Hank Wu, Brian T
Lamb, and Peter Uetz. Mpidb: the microbial protein interaction database.
Bioinformatics, 24(15):1743–1744, 2008.

[29] Kristian A. Gray, Louise C. Daugherty, Susan M. Gordon, Ruth L.
Seal, Mathew W. Wright, and Elspeth A. Bruford. Genenames.org:
the hgnc resources in 2013. Nucleic Acids Research, 41(D1):D545–
D552, 2013. http://nar.oxfordjournals.org/content/41/
D1/D545.abstract.

http://nar.oxfordjournals.org/content/32/suppl_1/D258.abstract
http://nar.oxfordjournals.org/content/32/suppl_1/D258.abstract
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1214/aoms/1177706098
http://nar.oxfordjournals.org/content/41/D1/D545.abstract
http://nar.oxfordjournals.org/content/41/D1/D545.abstract


94 BIBLIOGRAPHY

[30] Dario Greco, Panu Somervuo, Antonio Di Lieto, Tuomas Raitila, Lu-
cio Nitsch, Eero CastrÃ c©n, and Petri Auvinen. Physiology, pathol-
ogy and relatedness of human tissues from gene expression meta-analysis.
PLoS ONE, 3(4):e1880, 04 2008. http://dx.plos.org/10.1371%
2Fjournal.pone.0001880.

[31] Dov Greenbaum, Christopher Colangelo, Kenneth Williams, and Mark Ger-
stein. Comparing protein abundance and mrna expression levels on a ge-
nomic scale. Genome Biol, 4(9):117, 2003.

[32] Pierre C Havugimana, G Traver Hart, Tamás Nepusz, Haixuan Yang, An-
drei L Turinsky, Zhihua Li, Peggy I Wang, Daniel R Boutz, Vincent Fong,
Sadhna Phanse, et al. A census of human soluble protein complexes. Cell,
150(5):1068–1081, 2012.

[33] Henning Hermjakob, Luisa Montecchi-Palazzi, Chris Lewington, Sugath
Mudali, Samuel Kerrien, Sandra Orchard, Martin Vingron, Bernd Roechert,
Peter Roepstorff, Alfonso Valencia, et al. Intact: an open source molecular
interaction database. Nucleic acids research, 32(suppl 1):D452–D455, 2004.

[34] Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Systematic and
integrative analysis of large gene lists using david bioinformatics resources.
Nature protocols, 4(1):44–57, 2008.

[35] Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Bioinformat-
ics enrichment tools: paths toward the comprehensive functional analysis of
large gene lists. Nucleic acids research, 37(1):1–13, 2009.

[36] Arek Kasprzyk. Biomart: driving a paradigm change in biological data man-
agement. Database, 2011:bar049, 2011.

[37] Markus Krupp, Jens U. Marquardt, Ugur Sahin, Peter R. Galle, John
Castle, and Andreas Teufel. Rna-seq atlas - a reference database for
gene expression profiling in normal tissue by next-generation sequencing.
Bioinformatics, 28(8):1184–1185, 2012. http://bioinformatics.
oxfordjournals.org/content/28/8/1184.abstract.

[38] Dekang Lin. An information-theoretic definition of similarity. In ICML,
volume 98, pages 296–304, 1998.

[39] Wen-hsien Lin, Wei-chung Liu, and Ming-jing Hwang. Topological and
organizational properties of the products of house-keeping and tissue-
specific genes in protein-protein interaction networks. BMC systems biology,
3(1):32, 2009.

http://dx.plos.org/10.1371%2Fjournal.pone.0001880
http://dx.plos.org/10.1371%2Fjournal.pone.0001880
http://bioinformatics.oxfordjournals.org/content/28/8/1184.abstract
http://bioinformatics.oxfordjournals.org/content/28/8/1184.abstract


BIBLIOGRAPHY 95

[40] H. Lodish. Molecular Cell Biology. W. H. Freeman, 2008. http://
books.google.com/books?id=K3JbjG1JiUMC.

[41] Tiago JS Lopes, Martin Schaefer, Jason Shoemaker, Yukiko Matsuoka,
Gabriele Neumann, Miguel A Andrade-Navarro, Yoshihiro Kawaoka, Hi-
roaki Kitano, et al. Tissue-specific subnetworks and characteristics of
publicly available human protein interaction databases. Bioinformatics,
27(17):2414–2421, 2011.

[42] David J Lynn, Geoffrey L Winsor, Calvin Chan, Nicolas Richard, Matthew R
Laird, Aaron Barsky, Jennifer L Gardy, Fiona M Roche, Timothy HW Chan,
Naisha Shah, et al. Innatedb: facilitating systems-level analyses of the mam-
malian innate immune response. Molecular systems biology, 4(1), 2008.

[43] Marc Mino and T Sanavia. Fastsemsim: Fast semantic similarity over
gene ontology annotations. http://www.eccb12.org/poster/
accepted/. Poster presented at ECBB 2012, cited with permission from
the author.

[44] Marco Mino. fastSemSim. https://sites.google.com/site/
fastsemsim/home. https://sites.google.com/site/
fastsemsim/home. Accessed: 2014-03-18.

[45] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with ar-
bitrary degree distributions and their applications. Phys. Rev. E, 64:026118,
Jul 2001. http://link.aps.org/doi/10.1103/PhysRevE.64.
026118.

[46] National University of Singapore. Mbinfo. http://www.mechanobio.
info/. http://www.mechanobio.info/.

[47] Sandra Orchard, Samuel Kerrien, Sara Abbani, Bruno Aranda, Jig-
nesh Bhate, Shelby Bidwell, Alan Bridge, Leonardo Briganti, Fiona SL
Brinkman, Gianni Cesareni, et al. Protein interaction data curation: the inter-
national molecular exchange (imex) consortium. Nature methods, 9(4):345–
350, 2012.

[48] Karl Pearson. X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. Philo-
sophical Magazine Series 5, 50(302):157–175, 1900. http://www.
tandfonline.com/doi/abs/10.1080/14786440009463897.

http://books.google.com/books?id=K3JbjG1JiUMC
http://books.google.com/books?id=K3JbjG1JiUMC
http://www.eccb12.org/poster/accepted/
http://www.eccb12.org/poster/accepted/
https://sites.google.com/site/fastsemsim/home
https://sites.google.com/site/fastsemsim/home
https://sites.google.com/site/fastsemsim/home
https://sites.google.com/site/fastsemsim/home
http://link.aps.org/doi/10.1103/PhysRevE.64.026118
http://link.aps.org/doi/10.1103/PhysRevE.64.026118
http://www.mechanobio.info/
http://www.mechanobio.info/
http://www.mechanobio.info/
http://www.tandfonline.com/doi/abs/10.1080/14786440009463897
http://www.tandfonline.com/doi/abs/10.1080/14786440009463897


96 BIBLIOGRAPHY

[49] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear
time algorithm to detect community structures in large-scale networks. Phys-
ical Review E, 76(3):036106, 2007.

[50] Philip Resnik. Using information content to evaluate semantic similarity in
a taxonomy. arXiv preprint cmp-lg/9511007, 1995.

[51] Philip Resnik. Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural language.
arXiv preprint arXiv:1105.5444, 2011.

[52] Sebastien Rombauts. SQLiteC++. https://srombauts.
github.io/SQLiteCpp/. https://srombauts.github.
io/SQLiteCpp/. Accessed: 2014-01-21.

[53] Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-
Kishikawa, Amélie Dricot, Ning Li, Gabriel F Berriz, Francis D Gibbons,
Matija Dreze, Nono Ayivi-Guedehoussou, et al. Towards a proteome-
scale map of the human protein–protein interaction network. Nature,
437(7062):1173–1178, 2005.

[54] Gabriella Rustici, Nikolay Kolesnikov, Marco Brandizi, Tony Burdett,
Miroslaw Dylag, Ibrahim Emam, Anna Farne, Emma Hastings, Jon Ison,
Maria Keays, et al. Arrayexpress update - trends in database growth and
links to data analysis tools. Nucleic acids research, 41(D1):D987–D990,
2013.

[55] Lukasz Salwinski, Christopher S Miller, Adam J Smith, Frank K Pettit,
James U Bowie, and David Eisenberg. The database of interacting proteins:
2004 update. Nucleic acids research, 32(suppl 1):D449–D451, 2004.

[56] Martin H Schaefer, Jean-Fred Fontaine, Arunachalam Vinayagam, Pablo
Porras, Erich E Wanker, and Miguel A Andrade-Navarro. Hippie: Integrat-
ing protein interaction networks with experiment based quality scores. PLoS
One, 7(2), 2012.

[57] Andreas Schlicker, Francisco S Domingues, Jörg Rahnenführer, and Thomas
Lengauer. A new measure for functional similarity of gene products based
on gene ontology. BMC bioinformatics, 7(1):302, 2006.

[58] Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit:
An interactive tool suite for high-performance network analysis. CoRR,
abs/1403.3005, 2014.

https://srombauts.github.io/SQLiteCpp/
https://srombauts.github.io/SQLiteCpp/
https://srombauts.github.io/SQLiteCpp/
https://srombauts.github.io/SQLiteCpp/


BIBLIOGRAPHY 97

[59] Andrew I. Su, Tim Wiltshire, Serge Batalov, Hilmar Lapp, Keith A. Ching,
David Block, Jie Zhang, Richard Soden, Mimi Hayakawa, Gabriel Kreiman,
Michael P. Cooke, John R. Walker, and John B. Hogenesch. A gene at-
las of the mouse and human protein-encoding transcriptomes. Proceed-
ings of the National Academy of Sciences of the United States of America,
101(16):6062–6067, 2004. http://www.pnas.org/content/101/
16/6062.abstract.

[60] Haibao Tang, Brent Pedersen, Aurelien Naldi, and Patrick Flick. goa-
tools - tools for gene ontology. https://github.com/tanghaibao/
goatools. https://github.com/tanghaibao/goatools.

[61] Mathias Uhlén, Erik Björling, Charlotta Agaton, Cristina Al-Khalili Szig-
yarto, Bahram Amini, Elisabet Andersen, Ann-Catrin Andersson, Pia An-
gelidou, Anna Asplund, Caroline Asplund, et al. A human protein atlas for
normal and cancer tissues based on antibody proteomics. Molecular & Cel-
lular Proteomics, 4(12):1920–1932, 2005.

[62] Mathias Uhlen, Per Oksvold, Linn Fagerberg, Emma Lundberg, Kalle Jonas-
son, Mattias Forsberg, Martin Zwahlen, Caroline Kampf, Kenneth Wester,
Sophia Hober, et al. Towards a knowledge-based human protein atlas. Na-
ture biotechnology, 28(12):1248–1250, 2010.

[63] Kavitha Venkatesan, Jean-Francois Rual, Alexei Vazquez, Ulrich Stelzl,
Irma Lemmens, Tomoko Hirozane-Kishikawa, Tong Hao, Martina Zenkner,
Xiaofeng Xin, Kwang-Il Goh, et al. An empirical framework for binary
interactome mapping. Nature methods, 6(1):83–90, 2009.

[64] Haiyuan Yu, Leah Tardivo, Stanley Tam, Evan Weiner, Fana Gebreab,
Changyu Fan, Nenad Svrzikapa, Tomoko Hirozane-Kishikawa, Edward Ri-
etman, Xinping Yang, et al. Next-generation sequencing to generate interac-
tome datasets. Nature methods, 8(6):478–480, 2011.

[65] Andreas Zanzoni, Luisa Montecchi-Palazzi, Michele Quondam, Gabriele
Ausiello, Manuela Helmer-Citterich, and Gianni Cesareni. Mint: a molecu-
lar interaction database. FEBS letters, 513(1):135–140, 2002.

[66] Jiang Zhu, Fuhong He, Shuhui Song, Jing Wang, and Jun Yu. How many
human genes can be defined as housekeeping with current expression data?
BMC Genomics, 9(1), 2008. http://www.biomedcentral.com/
1471-2164/9/172.

http://www.pnas.org/content/101/16/6062.abstract
http://www.pnas.org/content/101/16/6062.abstract
https://github.com/tanghaibao/goatools
https://github.com/tanghaibao/goatools
https://github.com/tanghaibao/goatools
http://www.biomedcentral.com/1471-2164/9/172
http://www.biomedcentral.com/1471-2164/9/172

	Abstract
	Contents
	Introduction
	Thesis structure
	Biological background
	Proteins
	Protein-protein interactions
	Protein-protein interaction networks
	Protein expression and tissue-specificity
	Tissue-specific PPIs

	Complex networks
	Random graphs
	Scale-free graphs
	Graph properties


	Related work and data sources
	Protein-protein interaction networks
	Yeast two-hybrid
	Protein complexes
	Literature curated PPIs
	Composite PPI networks

	Protein expression
	DNA microarray chips
	RNA sequencing
	Antibody annotation

	Tissue-specific PPI networks
	Graph analysis and clustering

	Methods and Datasets
	Data pipeline
	Common data format
	Gene identifier mapping
	Merging duplicates
	Classifying expression values

	Expression datasets
	Basic properties
	Tissue expression
	Tissue-specific and housekeeping proteins
	Expression data ``core''

	Properties of PPI networks
	Network sizes
	Degree distribution

	Tissue specific PPIs
	Expression coverage
	Sizes of tissue specific subnetworks

	Algorithms for analysis of tissue-specific PPI networks
	Graph representation of tissue-specific PPIs
	Local clustering coefficient
	Betweenness centrality

	Scoring clusters based on Gene Ontology
	Gene Ontology
	Semantic similarity
	Efficiently scoring clusters

	Clustering of PPIs
	Clustering and Modularity
	Clustering algorithms
	Identifying important modules
	Edge weighting


	Implementation
	Data pipeline
	Analysis
	Graph analysis
	Final data analysis and visualizations


	Evaluation and discussion
	Performance evaluation
	Local clustering coefficient
	Betweenness centrality
	Parallel Label Propagation

	Benchmarking prior results
	Analysis and Results
	Discussion

	Gained importance of tissue-specific proteins
	Analysis
	Results
	Discussion

	Graph clustering for identification of functional modules
	Different clustering algorithms
	Identifying functional modules
	Discussion


	Conclusion and future work
	Summary and conclusions
	Future work

	Appendix
	Bibliography

