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Abstract—The capability to conduct Maximum Likelihood
based phylogenetic (evolutionary) analyses on datasets that con-
tain both morphological, as well as molecular data partitions
with programs such as RAxML, gives rise to new methodological
questions. As we demonstrate on 5 real world datasets that
comprise morphological as well as DNA data the trees inferred by
separately using the morphological or molecular data partitions
are highly incongruent. Since in typical current-day phyloge-
nomic alignments, there is significantly more molecular than
morphological data available, and hence the final tree shape
in a concatenated analysis is dominated by molecular data,
the question arises how morphological data can be used within
this context. One important application lies in the phylogenetic
placement of fossil taxa (for which only morphological data
is available) into a fixed, given molecular or otherwise well-
established reference tree. By using real and simulated datasets
we conduct the first assessment of placement accuracy for fossil
taxa under the Maximum Likelihood criterion. We demonstrate
that, despite conflicting phylogenetic signals from the morpholog-
ical and molecular partitions, the Maximum Likelihood criterion
is powerful enough to yield accurate fossil placements. Moreover,
we develop and make available a new morphological site weight
calibration algorithm that yields an average improvement of
fossil placement accuracy of 20% on more than 2,500 simulated
datasets and of 25% on the 5 real-world datasets that all contain
highly conflicting phylogenetic signal.

Index Terms—Phylogenetic inference; Morphological Data;
Fossil Placement; RAxML

I. INTRODUCTION

The on-going extension of analysis capabilities for parti-
tioned (phylogenomic) datasets in programs for Maximum
Likelihood (ML [1]) based tree inference allows to address
novel methodological questions. Recently, we have integrated
additional ML substitution models for binary morphological
data [2] into RAxML [3] (version 7.2.6, available at: http:
//wwwkramer.in.tum.de/exelixis/software.html). The new ver-
sion of RAxML allows for the analysis of super-matrices (also
called total evidence approach or multi-gene/phylogenomic
alignments) that contain a mix of data-types, i.e., an input
alignment may consist of concatenated morphological, DNA,
and protein (amino acid) sequence partitions that represent the
organisms under study.

An example for such a phylogenomic alignment with 4
present-day organisms (the great apes for instance) and one
fossil taxon (e.g., some common extinct ancestor of the human
and the chimpanzee) that entails a binary/morphological data
partition with 6 sites (columns/morphological characters) and
a DNA data partition with 24 sites is given below. As already

mentioned, there will usually not be any molecular data
available for the fossil taxa under study, hence the molecular
sequence part of the fossil is filled with gaps, which are
treated as undetermined characters in all standard ML-based
and Bayesian implementations, and thereby do not influence
the likelihood computations.

Fossil 001101------------------------
Human 000111A-GGCATATCCCATACAAAGGTTA
Chimp 000100ATGGCACACCCAACGCAAGGGTGA
Gorilla 001111ATGGCCAACCACTCCCAAAAGTCA
Orangutang 111011CGGGCACATGCAGCGCAA-A-T-A

Within this context we analyze the potential applications
of morphological (throughout this paper we exclusively use
binary characters, i.e., we do not consider multi-state mor-
phological characters) data for gaining novel evolutionary
insights. For this purpose we use 5 real-world partitioned input
datasets that contain both morphological and molecular (DNA)
partitions as well as more than 2,500 simulated morphological
datasets. It is important to emphasize, that at present it is hard
to use a larger number of real-world datasets for the purposes
of our study, because they are not readily available in standard
tree and alignment repositories such as TreeBase [4].

A general problem with morphological data within the phy-
logenomic context, is that only a few morphological character
sites (typically 50–500 alignment columns, see Table I) are
available compared to a constantly growing number of molec-
ular character sites (typically 1,000 to tens of thousands in
current phylogenomic studies, see, e.g., [5]). Thus, the overall
per site log likelihood contribution of the morphological sites
will be very small and therefore only have a negligible impact
on the shape of the overall tree topology that is inferred based
on the concatenated morphological and molecular dataset. In
addition, there can be a significant incongruence between best-
known ML trees (ML for phylogenetic trees is NP-hard [6])
obtained from individual tree searches on either the morpho-
logical or the molecular partitions of the input dataset. Given
that, tree shapes are largely dominated by the molecular part
of the input datasets because of the masses of molecular data
that have now become available, the question arises what the
potential use of those comparatively few (a couple of hundred
compared to tens of thousands) morphological columns might
be, since they will mostly add some insignificant noise to the
signal of broadly sampled phylogenomic datasets. Currently,
there exist two application scenarios that make use of a given



“true” reference tree, which we assume to be the molecular
tree in this paper, though this assumption can evidently be
challenged. As a reference tree one may also consider using a
well-established species tree from the literature or for instance
use the NCBI (National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov/) taxonomy to obtain a “true”
reference tree.

Scenario I: Given a reference tree and a morphological data
matrix one may use this matrix for the phylogenetic placement
of a fossil taxon for which no molecular data exists. This
essentially means that we impose a well-established reference
topology onto the morphological character matrix and then
try to insert (place) the fossil by computing the best-scoring
insertion position under Maximum Likelihood in the reference
tree.

Scenario II: One may also be interested in inferring the
ancestral states on a fixed and potentially dated reference
topology in order to determine at which point of time in the
past (on which branch) a transition between, e.g., green eye
color and blue eye color occured.

A problem that is, as shown in this paper, inherent to both
use cases for morphological data is that of incongruence, i.e.,
conflict of phylogenetic signal, between the morphological tree
and the (molecular) reference tree. Here, we address issues
pertaining to Scenario I, i.e., we assess the accuracy of fossil
placement for morphological data with an incongruent tree
signal. While our computational experiments show, that place-
ment accuracy under ML is already relatively good (above
85%) and robust against noise, despite conflicting signals in
the data, we also devise a new statistical method that further
improves fossil placement accuracy by approximately 20-25%
on average.

The method which we denote as morphological weight
calibration method, can infer weights for morphological align-
ment sites in such a way, that sites which are congruent to
the reference tree obtain a higher weight than incongruent
sites, such that they contribute more to the overall likeli-
hood during the phylogenetic placement process. The above
methods have been implemented in the current version 7.2.6
of RAxML which is freely available as open-source code at
http://wwwkramer.in.tum.de/exelixis/software.html.

To the best of our knowledge, this work represents the
first systematic assessment of fossil placement accuracy and
introduces the first statistical procedure for morphological site
weight calibration under Maximum Likelihood. In addition,
we provide the first complete Maximum Likelihood-based
framework, including a placement and a weight calibration
method, for fossil placement as open-source code.

The remainder of this paper is organized as follows: In Sec-
tion II we briefly cover related work. Thereafter (Section III),
we outline our fossil placement algorithm and in Section IV
our statistical weight calibration method. In Section V we
describe the experimental setup and datasets used. In the
following Section VI we describe experimental results on
simulated and real data, and also discuss the placements of real
fossils in a biological context. We conclude in Section VII.

II. RELATED WORK

The assignment of weights to morphological sites, which
we henceforth denote as weight calibration problem, has
previously mainly been addressed within the framework of
correct value range treatment for quantitative versus qualitative
traits [7], [8], i.e., not with the goal to reduce incongruence,
but with better biological modeling in mind. Those methods
are primarily used in phylogenetic analyses under Maximum
Parsimony (MP [9]), where each morphologic trait (character)
needs to have the same relative weight. For MP, weight
calibration is used to eliminate unequal weightings that may
arise from different value ranges on multi-state morphological
characters. Because nothing is known about the relative infor-
mativeness of transformations on different characters, equal
weighting should be assumed a priori [8], [10]. As pointed
out by J.J. Wiens [7] this issue has generally received little
attention, despite its importance and biological relevance.

In contrast to the above, we investigate (i) to which extent
incongruent signal in the morphological and molecular data
partitions can bias placement accuracy and (ii) if morpholog-
ical site weight calibration can be used to filter out morpho-
logical sites that are highly congruent to the reference tree.

In a recent paper J.J. Wiens [11], addresses the question if
the addition of molecular data (instead of using morphological
data alone) can improve the phylogenetic position/placement
of fossils (for which molecular data is not available) in trees,
by exclusively using simulated datasets and Bayesian as well
as Maximum Parsimony methods. While he finds that the
usage of molecular data in addition to morphological data
can increase accuracy, or will at least not affect accuracy
in the worst case, he does not address the effects of incon-
gruent signal in the morphological and molecular partitions
on placement accuracy. Our approach is different in that we
assume, that the molecular tree is the reference tree and that
there may be a significant amount of incongruence in the trees
favored by the molecular and morphological partitions. We
also demonstrate this incongruence on real datasets.

III. FOSSIL PLACEMENT ALGORITHM

Initially, we require a method to place our fossil(s) into a
given molecular or otherwise well-established reference tree
by exclusively using the morphological part of data for which
fossil data is available. An example is provided in Figure 1,
where we intend to place a fossil into a reference tree with
4 current-day organisms, once again using the example of the
great apes. For the sake of simplicity we will only consider
the case were we need to place a single fossil into the tree; the
placement procedure for more than one fossil is analogous.

The input for the fossil placement algorithm in RAxML
consists of the reference tree tref that comprises the n
morphological sequences (4 in our example) of present-
day species. The input alignment contains the n present-
day sequences as well as the fossil sequence(s) we intend
to place into the tree. As already mentioned we assume that
tref has been obtained via a thorough ML analysis of the
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Fig. 1. Example for a phylogenetic fossil placement problem.

corresponding molecular sequence data or by using a well-
established species tree, e.g., as obtained from the literature
or the NCBI taxonomy database. Initially, the algorithm will
read tref and the alignment and mark all sequences (in this
case only the one fossil sequence) of the alignment that are
not contained in tref as a query sequence(s). Thereafter, the
ML model parameters and branch lengths of tref will be
optimized.

After this step, the actual placement algorithm is invoked
which will successively insert (and remove again) the fossil
sequence into all 2n − 3 branches of tref and compute the
respective ML score (insertion score). The insertion score will
then be stored in a list that keeps track of the insertion scores
of the fossil into all 2n − 3 branches (5 branches in the
example) of the reference tree. The output of this procedure
for evolutionary placement is then simply the input reference
tree, extended by an assignment of the fossil to the respective
best-scoring insertion branch in tref as outlined in Figure 2.
Our placement algorithm can also conduct a phylogenetic
bootstrapping procedure [12], i.e., repeat the computation of
the best insertion score for the fossil under slight alterations
of the input data. This allows for assessing uncertainty in the
placement of the fossil by including several potential insertion
positions into the reference tree and assigning respective
bootstrap support values to each potential placement. The re-
spective output of the bootstrapping procedure is also depicted
in Figure 2. Finally, we can also invoke the above placement
algorithm (with and without the Bootstrapping option) using
an explicit weight vector to specify per column (per alignment
site) integer weights. This option is important for using weight
calibration results (see Section IV).

Finally, we also require measures to quantify the placement
accuracy of the fossil. Therefore we will assume that a “true”
position, i.e., the true insertion branch of the fossil, is known.
We can than measure the distance between the true insertion
position and the calculated insertion position. To quantify
placement accuracy, we use two distance measures based on
the topology and branch lengths of the reference tree.

To quantify the distance between the true position and the
calculated position of the fossil we use the following measures:
The “Node Distance” (ND), is the unweighted path length in
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Fig. 2. Example output of the phylogenetic fossil placement procedure
without and with Bootstrap support values.

the reference tree between the true and the calculated insertion
branche. This corresponds to the number of nodes located
on the path that connects the two insertion branches (see
Figure 3a) and represents an absolute distance measure. The
second measure is the sum of branch lengths on the path
connecting the calculated with the true insertion branch. This
measure includes 50% of the branch length of the insertion-
branch and 50% of the length of the “true” original branch
(see Figure 3a). For comparability between different trees and
in order to obtain a relative measure of placement accuracy,
we normalize the branch path length by dividing it through the
maximum tree diameter (see Figure 3b). The maximum tree
diameter is the branch path of maximum length between two
taxa in the reference tree. This distance measure is henceforth
denoted as “Branch Distance Normalized” (BDN%).

original Branch

insertion Branch

tree Diametertwo nodes

on path

branch distance

a) b)

Fig. 3. Example tree with two branches (true and calculated insertion branch)
highlighted. There are two nodes on the path, so the node distance is 2. The
branch distance corresponds to the length of the connecting path, where of
the two end branches only half of the branch length is used. (b) Tree diameter
which is used to normalize the branch distance

When the placement algorithm is used with bootstrapping,
more than one potential insertion branch can be proposed
for a fossil (see Figure 2), which means that we need to
appropriately adapt our distance measures to incorporate Boot-
strap support values. For a bootstrap run with Nbs bootstrap
replicates, the output of the algorithm contains a set of
i = 1...N , where N ≤ Nbs, insertion positions for the fossil
with bootstrap values Si. Using this information we derive a



set of ND or BDN distances Di to the correct branch for each
alternative Bootstrap placement i. We use the Di to represent
the bootstrap placement information as a single quantity for
the fossil placement accuracy by defining the Weighted Root
Mean Squared Distance (WRMSD), Dwrms as follows:

Dwrms =

√√√√ 1

N

N∑
i=1

(
Si

Nbs
Di)2 (1)

IV. WEIGHT CALIBRATION ALGORITHM

As already mentioned, there may be significant incongru-
ence between the phylogenetic signal, i.e., the trees that are
favored by the morphological and molecular partitions of
the data. As such, one of the key questions is to which
extent this incongruency affects the placement accuracy of
fossils into a tree derived from molecular data, and if there
exist mechanisms to efficiently determine which sites of the
morphological data partition are congruent to the molecular
reference tree.

Therefore, we need to devise a criterion to determine those
sites from a—in our case—morphological data partition that
are highly congruent to a given reference tree. Ideally, we
would like to calibrate the weights, i.e., execute the fossil
placement algorithm described in the preceding Section with a
weight vector that enhances the signal of morphological sites
that are congruent to the reference tree. This weighting scheme
should idelly increase fossil placement accuracy and decrease
the impact of noise caused by incongruent morphological
character sites.

In order to achieve this, we have designed a randomized
statistical procedure that works as follows. Initially, it reads
in the reference tree tref and the morphological alignment
and optimizes ML model parameters on this tree, without
changing the tree topology. Once the model parameters have
been optimized we store the per-site log likelihood values on
the reference tree in an appropriate vector L⃗ref of length m,
where m is the number of sites (columns) in the morphological
data.

Thereafter, we generate a set of n = 100 random trees,
r1, ..., r100. For each random tree ri, where i = 1...100, we
re-optimize ML model parameters again in order to compute
the per-site log likelihood scores L⃗ri for random tree ri.

Once the per-site log likelihood scores L⃗ref on the reference
tree and L⃗ri on the 100 random trees have been computed,
we can then determine the degree of congruence between
a specific site j, where j = 1...m, and the reference tree,
by counting in how many random trees ri the per-site log
likelihood of site j is worse than the per-site log likelihood
L⃗(j)ref in the reference tree tref . For each site j we compute
a weight vector entry W⃗ (j) =

∑n
i=1 δj,i where δref,i is

defined as follows:

δref,i =

{
1 if L⃗(j)ref > L⃗(j)ri
0 else

(2)

name # taxa # mol sites # morph sites
D1 35 2,006 117
D2 23 16,662 414
D3 32 1,713 381
D4 81 3,675 213
D5 18 266 35

TABLE I
OVERVIEW OF TEST DATASETS.

The above definition means that sites that are highly in-
congruent with tref will have low weights close to 0, while
sites that have weights close to 100 are highly congruent to the
reference tree. The rationale behind the above approach is that
a site that is highly congruent to the reference tree will score
worse on random trees, while a site that is highly incongruent
will score better or at least not worse on most random trees.
The above weight vector W⃗ can be used directly as input to
a placement analysis of a fossil. The weight vector W⃗ can
also be used to derive a binary weight vector W⃗bin in which
we set all elements with W⃗ (j) ≥ 95 to 1 and all elements
j with W⃗ (j) < 95 to 0 (using a typical cutoff at 5%). This
allows us to more radically filter out incongruent sites. When
comparing the per-site log likelihoods we do not explicitly use
a method for determining if values are significantly different
from each other, but rather compare site-wise log likelihoods
directly, since those effects will be averaged out by the random
re-sampling procedure. Finally, our tests indicate (results not
shown) that the computation of 100 random trees is sufficient
to infer stable weight values. Our experimental results on
simulated data clearly show that the above approach is able
to discriminate well between congruent and incongruent sites
and thereby justify this approach.

V. EXPERIMENTAL SETUP

A. Real-World Test Datasets

We used 5 real-world test datasets that contain morpho-
logical as well as molecular DNA data. The datasets are
labelled as D1 through D5 for ease of reference. Table I
provides the number of taxa and number of molecular as well
as morphological sites for all input datasets we used. The
real-world datasets can be downloaded at http://wwwkramer.
in.tum.de/exelixis/morphologyDatasets.tar.bz2.

Dataset D1 [13] contains 35 taxa of walnut trees (Juglan-
daceae). The original alignment also contained an additional
5 fossils. D2 [14] comprises 23 Marsupial sequences (the
original dataset also contained 10 fossils). D3 [15] contains
32 taxa of Amphibians (Caudates). D4 [16] contains 81 taxa
of tree-frogs (Hylidae). Finally, D5 [17] contains 18 taxa that
span a wider variety of species than the other datasets, ranging
from the chicken to the homo sapiens.

It is important to emphasize, that despite our efforts to
collect more combined morphological/molecular real world
datasets, a call for such datasets via the RAxML mailing list,
as well as a thorough search in the TreeBase database we were
not able to gather more real-world datasets. Therefore, we



also generated simulated datasets as outlined in the following
Section.

B. Simulated Datasets

An initial literature search revealed that, currently, there are
no freely available programs for generating simulated morpho-
logical datasets available. Therefore, we contacted J.J. Wiens,
who kindly made available to us the C code for generating
simulated datasets that was used in [11]. We completely re-
implemented and extended the original C program in Java. The
program can now read in two distinct trees, for instance, one
that is congruent to a reference topology and a random tree
that is incongruent to the reference topology. This allows for
generating simulated morphological datasets that entail two
partitions with conflicting phylogenetic signal. In addition,
the simulation program can generate morphological partitions
of variable length, e.g., a partition of 300 sites that are
incongruent to the reference tree and a partition with 100
sites that is congruent to the reference tree. Moreover, the
simulation program allows for generation of an artificial fossil
sequence, that is located at the innermost branch (the most
distant position from current-day species) of the tree on which
the data is being generated. While a fossil in general must
not necessarily be located at the innermost branch of a tree
(see [13]), this setup ensures that the placement problem as
such is more difficult, since the closest current-day relatives of
the fossil are located as far away as possible. In our simulated
data generation tool, the artificial fossil is thus automatically
placed onto the branch that has the longest branch-based path
length to the nearest tips (leaves) at either end of the branch
where the fossil is located.

C. Computation of RF-Distances

In order to assess incongruence between trees obtained from
morphological and molecular data partitions in Section VI we
need to compute the topological distances between trees.

The standard Robinson-Foulds [18] distance between two
trees is defined as the number of non-trivial bipartitions (splits
into taxon label sets induced by the inner branches of a tree)
that are contained in one of the two trees but not in both. The
RF distance is typically reported as relative distance, i.e., the
count of distinct bipartitions divided by 2(n−3) where n is the
number of organisms and n− 3 the number of inner branches
(branches not leading to tips/leaves). The number 2(n − 3)
hence represents the worst case for RF, i.e., the two trees under
comparison do not share any bipartitions. In addition to the RF
distance, one can also define the Weighted RF (WRF) distance
that takes into account the Bootstrap support values on the
branches. If there are incongruent bipartitions in the tree that
have low support, e.g., 10%, they will contribute a total of 0.2
to the WRF distance, while they would contribute 2 to the RF
score. Therefore, the WRF distance provides a better notion
of whether trees disagree in strongly (important) or weakly
(unimportant) supported bipartitions. The WRF distance also
better resembles the way in which Biologists usually assess

dataset RF(morph,mol) WRF(morph,mol)
D1 59% 39%
D2 60% 37%
D3 62% 47%
D4 82% 45%
D5 80% 42%

TABLE II
INCONGRUENCE BETWEEN MORPHOLOGICAL AND MOLECULAR TREES &
AVERAGE BS SUPPORT INDUCED BY MORPHOLOGICAL AND MOLECULAR

PARTITIONS.

there results. In our experiments we used the respective RF
and WRF options as implemented in RAxML.

VI. RESULTS

A. Incongruence of Morphological and Molecular Data

Initially, we assessed the (in)congruence between the mor-
phological and the molecular data partitions in our real world
datasets to substantiate our claim that morphological and
molecular partitions typically exhibit incongruent signal.

For this, we split up each real-world data set into the
morphological and molecular partitions and conducted thor-
ough ML analyses as follows: For the morphological and
the molecular datasets we seperately conducted 100 bootstrap
analyses and 50 ML searches for the best-scoring ML tree
under the Γ model of rate heterogeneity [19] using RAxML.

We then used the corresponding RAxML option to draw
Bootstrap support values on the respective best-scoring out
of 50 ML trees. The RF and WRF distances between the
respective best-scoring morphological and molecular trees
with Bootstrap support values were then computed in order
to determine incongruence between the data partitions (see
Table II).

The values provided in Table II clearly show that the
molecular and morphological trees are highly incongruent
based on the RF and WRF distances. RF distances exceed
50% and WRF distances oscillate around 40% which means
that several highly supported bipartitions of the molecular tree
are not recovered by the morphological tree.

In order to assess the stand-alone topological stability of
the morphological data partitions we conducted an additional
100 ML searches per dataset (on the morphological partitions
only). We then computed the maximum RF distance and the
mean RF distances within those ML tree sets based on all
pairwise RF distances between the resulting 100 ML trees
(in this case we do not include WRF distances, as the 100
ML trees have been calculated without bootstrap support). The
average and maximum distances in those tree sets as shown
in Table III provide a good notion for the general topological
instability of the morphological partitions. Except for datasets
D3 and D4 the mean RF distance largely exceeds 10% and the
maximum RF is larger than 50% in most cases, i.e., ML trees
for the same dataset only share 25% of non-trivial bipartitions.
Given that the datasets are relatively small with respect to
the number of taxa and that the RAxML search algorithm



has been shown to be very efficient in recovering the best-
known tree [3] we conclude that there is a significant lack
of signal with respect to tree reconstruction in the real-world
morphological datasets under study.

dataset max RF mean RF dataset max RF mean RF
D1 68.75% 21.70% D2 25.00% 06.27%
D3 58.62% 25.56% D4 64.10% 32.59%
D5 73.33% 33.05%

TABLE III
PAIRWISE MEAN AND MAXIMUM RF VALUES FOR SETS OF 100 ML TREES.

This initial set of experiments underlines two major claims:
Firstly, that morphological data partitions can yield signif-
icantly different trees than molecular data partitions and
secondly, that morphological data partitions can suffer from
a significant lack of or a weak phylogenetic signal and it
is therefore difficult to use them for de novo phylogenetic
inference. Based on this observation we focus on assessing
the usage of morphological data partitions for the placement
of fossils in the following computational experiments.

B. Morphological Weight Calibration
Initially we assessed if our statistical method for deter-

mining congruent and incongruent sites works on simulated
datasets. For this purpose we generated a simulated dataset
based upon the real molecular tree for dataset D3 and gen-
erated one incongruent partition with 200 morphological sites
and one partition congruent to the molecular tree that also
comprises 200 morphological sites. We then executed our
algorithm on this dataset and plotted the inferred weights over
the number of sites in the simulated alignment. As Figure 4
clearly shows we are able to distinguish between incongruent
(first half of the alignment, low values) and congruent (second
part of the alignment, high weight values) sites.
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Fig. 4. Weight assignments for congruent and incongruent (with respect to
a reference tree) data partitions of a simulated morphological dataset.

Results for larger datasets in terms of the number of organ-
isms included and distinct input trees are analogous (results
not shown).

C. Fossil Placement Accuracy on Simulated Datasets

To test the weight calibration algorithm on simulated
datasets, we generated simulated datasets as follows: Based
upon each of the 5 real molecular trees we generated 100
simulated datasets per real tree, by using different random
seeds for every simulated alignment and a different random
tree for sets of 10 simulated alignments in order to generate
morphological sites that are incongruent to the molecular
reference trees. For each set of those 100 simulation runs per
reference tree we also generated morphological alignments of
variable length, i.e., datasets containing 100 congruent as well
as 100, 200, 300, 400, and 500 incongruent sites derived from
the random tree. Thus, for each real input tree we generated a
total of 500 simulated alignments. The rationale for this setup
is to test up to which extent the degree of random noise in the
alignment affects placement accuracy. For ease of reference
we denote these simulated datasets as SX YYY ZZZ where
SX denotes the molecular tree from datasets D1-D5 that was
used to generate the congruent data partition, YYY the number
of congruent sites, and ZZZ the number of incongruent sites.

For each simulated dataset size, we placed the fossil (gen-
erated as described in Section V-B) into the reference tree
using our phylogenetic placement algorithm (see Section III)
with Bootstrapping in order to avoid any random effects that
may be caused by placement runs without Bootstrapping.
We executed those placement runs for the unweighted case
(all morphological sites included, without weight calibration;
denoted as UNW), the case with integer weights (using the
calibrated weights from W⃗ ; denoted as INT), using only
the incongruent data partition (SX ZZZ; denoted as BAD),
and only the congruent data partition (SX YYY; denoted as
GOOD). The accuracy was then measured using Equation 1
to compute the node-based absolute accuracy. Relative branch-
based accuracy results were analogous (data not shown). Fossil
placement accuracy was averaged over the 100 simulated
datasets for every dataset size.

The results of the simulated dataset experiments are pro-
vided in Table IV. Except for datasets S4, the approach with
calibrated site weights using integer values, clearly improves
placement accuracy by 25% to over 50%. In some cases
(datasets S1 and S3) it even outperforms the fossil placement
accuracy achieved by exclusively using the congruent data
partition. Overall the weight calibration approach improves
the average placement accuracy on all datasets (including
dataset S4) from 4.72 to 3.84, i.e., achieves an accuracy
improvement of 20%. Overall, there is a clear tendency for
placement accuracy to decrease with an increased amount
of incongruent sites. The bad overall performance on dataset
S4—note that the congruent morphological partition does not
achieve a significantly better placement accuracy than the
combined partitions—may be attributed to artefacts generated
by the simulated data generation process. In addition, the
molecular tree shape of S4 is particularly difficult, because it
has a large number of relatively short inner branches and long
branches leading to the leaves. As such, the simulated fossil



name UNW INT BAD GOOD
S1 100 100 1.37 0.00 5.02 0.66
S1 100 200 1.82 0.40 5.04 0.66
S1 100 300 2.01 0.44 5.16 0.66
S1 100 400 2.82 1.13 4.82 0.66
S1 100 500 2.93 1.11 5.05 0.66
S2 100 100 2.50 1.38 5.25 0.83
S2 100 200 3.29 1.64 5.71 0.83
S2 100 300 3.95 2.47 5.34 0.83
S2 100 400 3.87 2.57 5.14 0.83
S2 100 500 4.24 3.07 5.62 0.83
S3 100 100 1.36 0.44 7.00 0.95
S3 100 200 2.08 0.82 6.48 0.95
S3 100 300 2.44 0.85 6.66 0.95
S3 100 400 3.01 1.28 6.26 0.95
S3 100 500 3.85 1.46 6.76 0.95
S4 100 100 12.02 14.95 12.26 12.40
S4 100 200 11.25 13.93 11.59 12.40
S4 100 300 11.47 12.58 11.80 12.40
S4 100 400 12.08 12.36 11.49 12.40
S4 100 500 11.22 11.29 12.10 12.40
S5 100 100 2.04 1.32 5.55 0.92
S5 100 200 3.74 2.35 5.37 0.92
S5 100 300 3.92 2.74 5.66 0.92
S5 100 400 4.63 3.61 5.65 0.92
S5 100 500 4.14 3.28 5.54 0.92

TABLE IV
ABSOLUTE AVERAGE NODE-DISTANCE BASED ACCURACY FOR FOSSIL

PLACEMENTS ON SIMULATED DATASETS FOR UNWEIGHTED,
INTEGER-WEIGHTED SITES AS WELL AS INCONGRUENT AND CONGRUENT

DATA PARTITIONS.

that is placed at the innermost branch of the tree will be hard to
place accurately, because of the short internal branches. This
also explains the better performance of the D4 reference tree
on real data, because in this case we use current-day organisms
that are mostly attached to long branches to assess placement
accuracy. In addition to this, a congruent data partition length
of 100 may not be sufficient to compute an accurate placement
because the dataset has significantly more organisms than all
other tested datasets. For 100 simulated datasets S4 400 400,
i.e., with 400 congruent sites, the placement accuracy of the
congruent partition increased to 5.30 and that of the integer
weighted placement to 8.55. However, a further increase of
the congruent sites to a length of 800 did not yield further
significant improvements in placement accuracy.

D. Placement Accuracy on Real Datasets

The overall placement accuracy on real datasets was as-
sessed in a different way than on simulated data. While
some datasets include fossil data, unlike as for the simulated
datasets, we do not know the true phylogenetic position of
these fossils. To this end, we decided to base our analysis
only on the current-day species for which molecular data is
available. We assume that the true position of these taxa is
the position in the respective molecular reference topology.
In order to thoroughly test placement accuracy, from every
real world molecular tree, we removed one organism at a
time and then re-inserted it using only the morphological data

name UNW BIN INT 100
D1 1.26 0.93 1.05 1.05
D2 0.99 0.86 0.75 0.78
D3 1.32 1.14 0.75 0.99
D4 3.51 3.02 2.06 2.34
D5 3.13 3.34 2.20 2.43

TABLE V
ABSOLUTE NODE-DISTANCE BASED ACCURACY FOR FOSSIL PLACEMENTS

ON REAL-WORLD DATASETS FOR ALTERNATIVE SITE WEIGHTING
SCHEMES.

via the placement algorithm. On dataset D3 for instance, we
conducted 32 placement runs for each of the 32 species. Once
again, we used phylogenetic placement with bootstrapping and
extracted the average placement accuracy using the Weighted
Root Mean Squared Distance (see Equation 1). We conducted
placement runs for 4 different weighting schemes: unweighted
(denoted as UNW), binary weights (denoted as BIN), integer
weights (denoted as INT), and all weights set to 100 (denoted
as 100). In Table V we provide the absolute accuracy in terms
of average placement node distance for all analyzed weighting
schemes and all real-world datasets. In Table VI we provide
the relative accuracy in terms of average placement branch dis-
tance. The data presented clearly show, that the approach using
our weight calibration mechanism with integer weights yields
the best results in terms of accuracy. An interesting observation
is that the approach where a weight of 100 is assigned to
every site performs better than the binary weighting scheme.
This can be attributed to the application of the Bootstrap
procedure and a too strict cutoff of 5% used for generating
the binary weight vector. While our morphological calibration
mechanism works well, assigning weights of 100 to each
site assures that sites that contain congruent signal will with
high probability be included in the bootstrap replicates, while
this probability is low for binary weights or the unweighted
placement that comprise all sites at most once as opposed to
100 times. As the relatively good accuracies obtained for the
unweighted case indicate, Maximum Likelihood is able to filter
out noise, i.e., incongruent signal, for placing fossils. However,
the standard Bootstrap procedure may occasionally not include
some congruent sites in the bootstrap replicates, which can
bias the stability of the placement results. The probability for
not sampling congruent sites is relatively large, because the
morphological data partitions have comparably few sites.

Our placement algorithm using calibrated integer weights
yields placements that are approximately 25% better in terms
of node distance than the unweighted standard approach and
a relative average distance improvement (over all datasets) of
25%. Thus, despite the partially highly incongruent phyloge-
netic signal between morphological and molecular data parti-
tions, we are able to accurately place fossils in well-established
reference trees. Even using the unweighted approach one can
achieve better than 85% accuracy in the worst case.



name UNW BIN INT 100
D1 3.9% 3.4% 3.2% 3.1%
D2 4.6% 4.5% 3.6% 3.5%
D3 9.6% 7.8% 5.4% 8.3%
D4 11.0% 9.9% 7.6% 8.6%
D5 14.2% 14.2% 12.7% 13.0%

TABLE VI
RELATIVE BRANCH-DISTANCE BASED ACCURACY FOR FOSSIL

PLACEMENTS ON REAL-WORLD DATASETS FOR ALTERNATIVE SITE
WEIGHTING SCHEMES.

E. Placement Accuracy of Real Fossils: Two Case Studies

We also used morphological data for placing the real fossil
taxa that were included in the original biological analyses
of dataset D1 [13] and D2 [14]. Those fossil taxa had
previously been placed and analyzed using different placement
approaches in the aforementioned studies [13], [14]. While a
detailed biological analysis of the placements obtained via the
approach we present here is outside the scope of this paper, we
briefly address placements results using morphological weight
calibration and discuss potential interpretations.

Figure 5 depicts the placements of the Juglandaceae fossils.
The name labels of the fossil taxa in Figure 5 are preceded
by the word QUERY and we have appended the bootstrap
support for the insertion branch at the end of the name label.
The placements of the individual fossils is partly comparable
to the findings in [13].

The Polyptera, Palaeoplatycarya, and Platycarya fossils are
in a clade (subtree) with Carya and Juglans which corresponds
to empirical biological expectations, but are not located at the
root of the subtree containing all Juglans and Carya. Also the
Cruciptera fossil is placed with the Juglans, rather than being
located at the root of the subtree containing all Juglans. The
largest difference to the study presented by Manos et al. is that
the Paleooremunnea fossil is placed at the root of the subtree
containing the Oreomunnea in your tree rather than being
located at the root of the subtree comprising all Juglans and
Carya. However, the placement of the Paleooremunnea fossil
is know to be problematic (see [13], p. 425). While in [13] its
phylogenetic placement varies significantly, depending on the
method used, we obtain an assignment with 100% Bootstrap
support for this fossil. Overall, the fossil placements are
biologically reasonable and could give rise to new biological
hypotheses (D. Soltis, personal communication).

Figure 6 shows the placement of the Marsupial fossils
from [14]. The placement of the Djarthia fossil is particularly
interesting, as it seems to confirm the original placement as a
member of Australidelphia, but outside the subtree comprising
extant Australasian marsupials (see [14] Figure 3A-B). Note
that, in contrast to the original studies [13], [14] which include
the fossil sequences into a de novo tree inference, we placed
them individually into a previously generated molecular tree
using morphological data alone. This one-by-one placement of
the fossil sequences generates the multi-furcating (non-binary)
trees, in which more than one fossil taxon can be placed into

the same branch of the molecular reference tree.

Fig. 5. Fossil placement in dataset D1. The number behind the query
sequence names denotes the bootstrap support of the placement.

VII. CONCLUSION

We have conducted the first assessment of fossil placement
accuracy using morphological data under the Maximum Like-
lihood criterion on simulated and real-world datasets based
on a well-established reference tree. In addition, we have
developed a statistical weight calibration mechanism that is
able to identify morphological sites, that exhibit a phylogenetic
signal which is congruent to that of the reference tree. By using
according calibrated integer weights we can improve upon the



Fig. 6. Fossil placement in dataset D2. Placements with BS support < 10%
have been removed.

absolute and relative placement accuracy by 20% on simulated
datasets and by 25% on real-world datasets.

Moreover, we find, that despite the partially high incongru-
ence between ML trees from the morphological and molecular
data partitions, the achieved accuracy under Maximum Like-
lihood is sufficient for reliably placing fossils. Two biological
case studies with real fossil taxa reveal that we can obtain
reasonable biological results using the weight calibration and
fossil placement algorithms.

The statistical weight calibration procedure as well as the
phylogenetic placement algorithm have already been inte-
grated into RAxML which is a freely available and widely
used tool for phylogenetic inference.

Future work will cover a more detailed analysis and a poten-
tial refinement of the statistical weight calibration procedure
to. A method for computing incongruence among sites may
also be valuable for analyses of broad phylogenomic molecular
datasets.
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