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Abstract

We present an Evolutionary Placement Algorithm (EPA) and a

Web-Server for the rapid assignment of sequence fragments (short reads) to

edges of a given phylogenetic tree under the maximum-likelihood (ML)

model. The accuracy of the algorithm is evaluated on several real-world

data sets and compared to placement by pair-wise sequence comparison,

using edit distances and BLAST.

We introduce a slow and accurate as well as a fast and less accurate

placement algorithm. For the slow algorithm, we develop additional

heuristic techniques that yield almost the same run times as the fast

version with only a small loss of accuracy. When those additional heuristics

are employed, the run time of the more accurate algorithm is comparable to

that of a simple BLAST search for data sets with a high number of short

query sequences. Moreover, the accuracy of the EPA is significantly higher,

in particular when the sample of taxa in the reference topology is sparse or

inadequate. Our algorithm, which has been integrated into RAxML,

therefore provides an equally fast, but more accurate alternative to BLAST

for tree-based inference of the evolutionary origin and composition of short

sequence reads. We are also actively developing a web-server that offers a

freely available service for computing read placements on trees using the

EPA.

Keywords: maximum-likelihood, short sequence reads, phylogenetic

placement, RAxML, metagenomics
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Identification of organisms from, for example, microbial communities

increasingly relies on analysis of DNA extracted from soil or water samples

containing many, often unknown, organisms rather than from the individual

organisms. Recently, the advent of new DNA sequencing techniques (e.g.,

pyrosequencing; Ronaghi, 2001) has increased the amount of sequence data

available for identification and analysis of microbial communities by several

orders of magnitude. This rapid increase in the amount of sequence data

available poses new challenges for short-read sequence identification tools.

We can no longer expect that the steady increase in computing power,

according to Moore’s law, is fast enough to handle this flood of sequence

data.

Depending on the DNA sequencing method used, a single sequencing

run can already generate more than 100,000 short read sequences, which

comprise sequence fragments with a length of approximately 30 to 450

nucleotides (base pairs). Such sequencing runs can be carried out within

about an hour. Besides rapid full-genome assembly, another important

application is the sampling of microbial communities from, for example,

permafrost-affected soils (Ganzert et al., 2007), vertebrate guts (Ley et al.,

2005; Turnbaugh et al., 2008; Ley et al., 2008), hypersaline mats (Ley

et al., 2006), or on hands of humans (Fierer et al., 2008).

Given the large amount of short-read sequences that meta-genomic

studies of microbial communities often yield and the fact that the

provenance of these often is unknown, the first step in studies of
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meta-genomic data is to identify the biological origin of these reads. This

assignment of short reads to known organisms then allows us to examine

and compare microbial samples and communities (see Turnbaugh et al.,

2008). For instance, 20% of the reads in one sample might be most closely

related to a specific taxonomic group of bacteria, while in a different sample

only 5% may be associated to this group.

Here we present a novel algorithm, the Evolutionary Placement

Algorithm (EPA), for rapid phylogenetic identification of anonymous query

sequences (QS), using a set of full-length reference sequences (RS). The

most straight-forward approach to identify the origin of a QS is to use tools

that are based on sequence similarity (e.g., BLAST; Altschul et al., 1997).

However, the BLAST-based approach has an important limitation: It can

yield misleading assignments of QS to RS if the sample of RS does not

contain sequences that are sufficiently closely related to the QS (i.e., if the

taxon sampling is sparse or inappropriate). Any approach based on

pair-wise sequence similarity, like BLAST, will not unravel, but silently

ignore, potential problems in the taxon sampling of the RS. For instance,

given two RS a and b, a QS q may be identified by BLAST as being most

closely related to a. In reality, q might be most closely related to a RS c,

which is not included in the set of RS. Since this is a known problem (Koski

and Golding, 2001), recent studies of microbial communities have begun to

employ phylogenetic methods for QS identification (von Mering et al.,

2007), despite the significantly higher computational cost. This treatment

of short sequence reads is related to phylogenetic tree reconstruction

methods that employ stepwise addition of sequences (Kluge and Farris,
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1969), with the difference that each QS is individually placed in the

phylogenetic reference tree (RT). If a QS connects to an internal edge of a

RT comprising the RS (i.e., it is not located near a leaf of the tree), then

this indicates that the sampling of the RS is insufficient to identify and

characterize the diversity of the QS. This can be used as a means to

identify parts of the tree in which taxon sampling is sparse and to guide

sequencing efforts to improve the sampling.

To date, phylogeny-based identification of the provenance of

anonymous reads is conducted as follows: the QS are aligned with respect

to a reference alignment (RA) for the RS, and then inserted into the

reference tree either via a complete de novo tree reconstruction, a

constrained tree search, using the RT as a constraint or backbone, or a fast

and/or approximate QS addition algorithm, such as ARB (Ludwig et al.,

2004), which uses maximum parsimony (MP). For DNA barcoding,

phylogeny-based Bayesian analysis methods have recently been proposed by

Munch et al. (2008) as well as Nielsen and Matz (2006); these, however, are

applied to trees with significantly less taxa. Recently, Brady and Salzberg

(2009) proposed the Phymm and PhymmBL algorithms for metagenomic

phylogenetic classification, and report an improved classification accuracy

for simulated QS compared to BLAST for PhymmBL. Classification by

Phymm is based on oligonucleotide composition, whereas PhymmBL uses a

weighted combination of scores from Phymm and BLAST. These

algorithms classify QS relative to a given database of un-aligned bacterial

genomes (the NCBI RefSeq database; Pruitt et al., 2007) and their

phylogenetic labels as provided in the RefSeq database (i.e., from Phylum
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level down to Genus level). This is different to the EPA, which can be used

with any set of aligned RS and places QS into a fully resolved bifurcating

RT. Because of the different focus of Phymm and the EPA, it is currently

impossible to directly compare their accuracy on the same data sets (e.g.,

multiple sequence alignments and fully resolved phylogenies are not

provided by the NCBI RefSeq database). This also hinders direct

comparison to other previous phylogenetic classification methods like

PhyloPythia (McHardy et al., 2007), which is the only phylogenetic

classifier that has been compared to Phymm (Brady and Salzberg (2009)

show that Phymm and BLAST substantially outperform PhyloPythia) and

MEGAN (Hudson et al., 2007). However, it is possible to compare the

relative performance of the different methods (Phymm, PhymmBL, and

EPA) to placements/classifications obtained by using BLAST, on data sets

that are suitable for the respective methods. Therefore, we mainly compare

the accuracy of the EPA to basic BLAST searches and discuss the

analogous accuracy evaluation performed for Phymm/PhymmBL.

A very similar algorithm to the EPA, called pplacer, has been

developed independently by Matsen et al. (2010). The execution times of

pplacer are comparable to those of the EPA according to a joint

performance study conducted by F. Matsen, A. Stamatakis, and

S.A. Berger. A comparative study is included in Matsen et al. (2010).

The current standard approach for analysis of environmental reads

yields a fully resolved bifurcating tree that often comprises more than

10,000 sequences (Fierer et al., 2008; Turnbaugh et al., 2008). The

alignments used to reconstruct these trees mostly comprise only a single
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gene, typically 16S or 18S rRNA. The reconstruction of such large trees

with thousands of taxa, based on data from a single gene, is

time-consuming and hard because of the weak historical signal in the

alignment, which results in a decreased reconstruction accuracy for trees

with many, but relatively short sequences (see Bininda-Emonds et al., 2000;

Moret et al., 2002). Moreover, in metagenomic data sets a large number of

QS will only have a length of approximately 200-450 base pairs if a 454

sequencer is used. Thus, for identification of the provenance of short read

QS, the lack of historical signal becomes even more prevalent and critical if

a comprehensive tree is reconstructed. In order to solve the problems

associated with the lack of signal and to significantly accelerate the

analysis, we advocate a different approach that only computes the optimal

insertion position for every QS in the RT with respect to its ML score.

We introduce a new algorithm for the phylogenetic placement of QS

and thoroughly test the placement accuracy on eight published data sets.

We assess the impact of QS length on placement accuracy and conduct

tests on short reads derived from original full length sequences of the test

data sets. Because phylogenetic placement is inherently more

computationally intensive than BLAST-based placement, performance

optimization is an important factor in the development of such an

algorithm if it is to become a useful and fast alternative to BLAST.

Therefore, we have devised several evolutionary placement algorithms and

heuristics with varying degrees of computational complexity.

The algorithm, which has been developed and tested in cooperation

with microbial biologists, is already available in the latest open-source code
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release of RAxML (Stamatakis, 2006b) (version 7.2.7, released in August

2010, http://wwwkramer.in.tum.de/exelixis/software.html). The

alpha version of the respective web-service is available at

http://i12k-exelixis3.informatik.tu-muenchen.de/raxml. Our new

approach represents a useful, scalable and fast tool for evolutionarily sound

identification of the provinance of environmental QS. The EPA and pplacer

are currently the only algorithms that can perform the task described here.

The parallelization of the EPA (Stamatakis et al., 2010) and the ability to

conduct placements under all time-reversible substitution models and

data-types offered by RAxML is a unique feature of the EPA that helps it

to scale well on large and diverse data sets. Pplacer can infer placements

using either ML (like the EPA) or Bayesian posterior probabilities.

Evolutionary Placement Algorithm

The input for our evolutionary placement algorithm consists of a RT

comprising the r RS, and a large comprehensive alignment that contains

the r RS and the q QS. The task of aligning several QS with respect to a

given RS alignment can be accomplished with ARB (Ludwig et al., 2004),

NAST (DeSantis et al., 2006), MUSCLE (Edgar, 2004), MAFFT (Katoh

et al., 2005) or, as tested here, with HMMER (Eddy, 1998). One key

assumption is, that the RT is biologically well-established or that it has

been obtained via a preceding thorough phylogenetic analysis. In a typical

usage scenario, the EPA could be used for mapping distinct microbial

samples, for instance, from time series experiments or different
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locations/individuals, to the same, for example, microbial reference tree in

order to compare communities. Because the same RT can be used in

multiple placement runs, the inference of the RT is not part of the EPA.

Initially, the algorithm will read the RT and reference alignment and

mark all sequences not contained in the RT as QS. Thereafter, the ML

model parameters and edge lengths on the RT will be optimized using the

standard procedures implemented in RAxML (a description of the

maximum-likelihood model can be found in the supplementary material).

Once the model parameters and edge lengths have been optimized on

the RT, the actual identification algorithm is invoked. It will visit the

2r − 3 edges of the RT by a preorder tree traversal, starting at an arbitrary

edge of the tree leading to a tip (i.e., visit the current edge first and then

recursively visit the two unvisited neighboring edges). At each edge,

initially the probability vectors of the RT to the left and the right will be

re-computed (if they are not already oriented towards the current edge).

Thereafter, the program will successively insert, and subsequently remove,

one QS at a time into the current edge and compute the likelihood

(henceforth denoted as the insertion score) of the respective tree containing

r + 1 taxa. The insertion score will then be stored in a q × (2r − 3) table

that keeps track of the insertion scores for all q QS into all 2r − 3 edges of

the RT. In order to more rapidly compute the per-edge insertions of the

QS, we use an approximation that is comparable to the Lazy Subtree

Rearrangement (LSR) moves that are deployed in the standard RAxML

search algorithm (see Stamatakis et al., 2005). After inserting a QS into an

edge of the RT, we would normally need to re-optimize all edge lengths of
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the r + 1 tipped tree in order to obtain the corresponding insertion score.

Instead, we only optimize the three edges adjacent to the insertion node of

the QS (see Figure 1) before computing the likelihood of the insertion. This

approach rests on the same rationale that was used to justify the LSR

moves. Our experimental results justify this approximation because it

yields a high placement accuracy. We use two methods, like those used for

the LSR moves, to re-estimate the three edges adjacent to the insertion

edge: a fast method and a slow method that uses the Newton-Raphson

method. The fast method simply splits the insertion edge, br, in the RT

into two parts, br1 and br2, by setting br1 = br2 = br/2, and bq = 0.9 (i.e. the

edge leading to QS), where 0.9 is the default RAxML value to initialize

edge lengths. These values were chosen empirically for good placement

accuracy over varying input data. Note that, we used the slow method,

that is, the most accurate placement method available in RAxML without

the above approximations, for the main accuracy evaluation presented here.

Thereafter, we also conducted a separate comparison of the slow and fast

methods. The slow method repeatedly applies the Newton-Raphson

method to all three edges (br1, br2 and bq) until no further application of the

Newton-Raphson method is needed (i.e., when ǫ ≤ 0.00001, where ǫ is the

edge length change between two invocations of the Newton-Rhapson

method). Alternatively, our algorithm can also use MP to pre-score and

order promising candidate insertion edges in order to further accelerate the

placement process.

The output of this procedure consists of the RT, enhanced by

assignments of the QS to edges of the RT. Each QS is attached to the edge
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that yielded the best insertion score for the specific QS. Hence, the

algorithm will return a multi-furcating tree if two or more QS are assigned

to the same edge. An example is depicted in Figure 2.

The EPA algorithm can optionally use the non-parametric bootstrap

(Felsenstein, 1985) to account for uncertainty in the placement of the QS.

An example for this is shown in Figure 3. Thus, a QS might be placed

repeatedly onto different edges of the RT with various levels of support. For

the bootstrap procedure, we introduce additional heuristics to accelerate

the insertion process. During the insertions onto the RT using the original

alignment we keep track of the insertion scores for all QS into all edges of

the RT. For every QS we can then sort the insertion edges by their scores

and for each bootstrap replicate only conduct insertions for a specific QS

into 10% of the best-scoring insertion edges on the RT. This reduces the

number of insertion scores to be computed per QS on each bootstrap

replicate by 90% and therefore approximately yields a ten-fold speedup for

the bootstrapping procedure. In a typical application scenario, one may

determine the diversity of the environmental sample for every replicate

using, for instance, UniFrac (Lozupone and Knight, 2005), and then

compute an average diversity over all replicates.

As a faster alternative to the non-parametric bootstrap, the insertion

scores can also be directly used to compute placement uncertainty. von

Mering et al. (2007) used expected likelihood weights (ELW; Strimmer and

Rambaut, 2002) to assign QS to an area of a tree with a certain confidence.

Methods for calculating a placement uncertainty using ELW are already

implemented in the EPA and pplacer.
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In order to improve the runtime of the slow insertion method, we

developed two heuristics that rely on the fast scoring approach (described

above) or MP scores, respectively. Given those pre-scoring techniques, the

number of insertion positions considered for the thorough, but slow

insertion process, can be reduced to a fraction of promising candidate

edges. The proportion of insertion edges suggested by the rapid pre-scoring

heuristics for analysis under the slow insertion method is determined by a

user-defined parameter fh. As part of our performance evaluation, we

tested the ML- and MP-based heuristics with regard to this parameter

setting.

It is a known problem (Jermiin et al., 2004) that compositional

heterogeneity can bias phylogenetic inference because it implies that the

sequences cannot have evolved under the same stationary, reversible and

homogeneous conditions (assumed by all the available time-reversible

substitution models). In the case of the EPA, this can be problematic for

the placement of QS onto potentially very short edges of the RT. Different

approaches exist to resolve those problems by using more sophisticated

models (e.g. Galtier and Gouy, 1998; Jayaswal et al., 2007). Nonetheless,

time-reversibility is required to accommodate the high computational

demands of large scale tree and EPA inferences, in particular with respect

to computing the likelihood on trees (the “pulley principle”; Felsenstein,

1981). Therefore, we recommend that users of EPA test their alignment of

RS for evidence that the sequences have not evolved under time-reversible

conditions (e.g., using methods published by Ababneh et al. (2006) and Ho

et al. (2006)) before using the EPA. If the data have not evolved under
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time-reversible conditions, then the conclusions drawn from using the EPA

should be given with this caveat in mind. These considerations do not

affect our accuracy assessment, because trees of full length sequences and

placements have been inferred under the same model and the potential

errors that may occur because of inappropriate model selection affect both

tree construction and placement.

Experimental Setup

Data Sets

To test the accuracy of the EPA and competing approaches, we used

eight reference alignments (RA) of nucleotides or amino acids from 140 up

to 1,604 sequences. The experimental data span a broad range of organisms

and include rbcL genes (D500), small subunit rRNA (D150, D218, D714,

D855, D1604), fungal DNA (D628) and amino acid sequences from

Papillomaviridae (D140). For each set we computed the most likely tree

and obtained bootstrap support (BS) (Stamatakis et al., 2008) values for

the internal edges; this ML tree was denoted the RT. The data sets are

available at http://wwwkramer.in.tum.de/exelixis/epaData.tar.bz2.

The selection of the data sets and data types per se is not important, as

long as QS with well supported positions can be extracted from them. It

should be noted, that the number of data sets that could be assessed was

limited by the excessive computational requirements of the leave-one-out

experiments described in the following sections. The question we intend to

answer by these experiments is this: can the EPA place a QS of reduced
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length onto approximately the same position from which the full-length QS

was pruned? We specifically did not include real metagenomic data sets in

our study because the phylogenetic positions of the QS are unknown.

Moreover, real metagenomic data sets do not allow for comparing the

placement accuracy, or inferred placement position, between full-length and

short-read sequences, whereas using a full-length sequence alignment and

emulating short-reads allows for such a comparison. Therefore, we emulated

metagenomic data sets using real-world alignments with ML trees and BS

support, which is as close as one can get to reality for assessing placement

accuracy using real sequence data. To analyze real metagenomic data we

used the parallel version of the EPA, which can be applied to very large real

metagenomic data sets (4,874 RS and 100,627 QS; Stamatakis et al., 2010).

Generation of QS

To evaluate the accuracy of our algorithm, we pruned one candidate

QS at a time from the existing ML trees before reinserting the QS into the

tree. We only pruned and reinserted those QS that were associated with

high BS scores in the RT in order to assess placement accuracy for taxa

whose position in the original tree is reliable. A candidate QS is considered

to have high BS, when the BS of either one of the two edges to which the

taxon is attached is ≥ 75% and the other one leads to a neighboring tip

(Fig. 4a), or if both of these edges have a BS ≥ 75% (Fig. 4b). The 75%

threshold reflects the typical empirical cutoff that is widely used in

phylogenetics (Hillis and Bull, 1993). For each QS, a reduced RT is derived

by pruning the respective tip from the original tree. The QS associated to
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that taxon is then placed onto the reduced tree (Fig. 4c) with our EPA

algorithm.

In our test data sets, the QS were always derived from the full-length

sequences in the RA. In a typical application scenario, however, the

placement algorithm will have to cope with QS that are significantly

shorter than the full-length sequences in the RA. Hence, we carry out a

systematic assessment of the placement accuracy depending on the length

of the QS by artificially shortening the full length sequence in question via

insertion of gaps. We deployed three distinct methods to produce a QS that

are ordered according to increasing biological realism:

A first method to produce QS involved randomly replacing existing

characters by gaps. While this method arguably does not reflect a real

usage scenario, it provides a means to systematically assess the placement

of QS over a wide variation of “virtual read lengths”, while minimizing the

influence of the position specific placement accuracy variation. Position

specific effects on placement accuracy have previously been identified as a

problem by Chakravorty et al. (2007). Multiple placement runs were

conducted for QS with the relative proportion of non-gap characters set to

10%, 20%,..., 90%, up to the full sequence length. Because the sequences

have been extracted from the original multiple alignment, the remaining

non-gap characters are still aligned to the RA. Because the proportion of

gaps is calculated relative to the length of the RA, the maximum

proportion of available non-gap characters is alignment dependent. We

emphasize that, mathematically, the introduction of random gaps does not

influence the calculation of the likelihood function, because the used models
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assume independence between sites. The results from these experiments

show the qualitative relationship between QS length and placement

accuracy, in a way that is not feasible with the more realistic QS generation

method described below, because of the high computational requirements of

these evaluations.

The second method to artificially shorten candidate QS involved

randomly sampling contiguous subsequences from the full length sequence

in question. This method to produce QS closely reflects the main EPA

application scenario. Typically, a large number of short sequence reads

generated by next generation sequencing methods from unknown positions,

will need to be placed onto a RT. For every full-length sequence in question

we sampled 20 QS with uniformly distributed positions and normally

distributed lengths (mean length: 200 ± 60 bp for nucleotides; 70 ± 20 for

amino acids). This roughly corresponds to the read lengths generated by

current high throughput sequencing technologies. We sampled 20 QS per

full-length sequence to minimize the aforementioned influence of

position-specific bias on the placement of QS. Because of the high

computational requirements of placing 20 QS per full-length sequence, we

did not repeat this evaluation for different mean read-lengths. To assess the

relationship between read length and placement accuracy we conducted the

random-gap evaluation. Because a method is needed to align the short

reads to the RA in a typical analysis using EPA, we also assessed placement

accuracy using re-aligned QS and compared it to the QS placement

accuracy induced by using the original alignment. We used HMMER to

re-align the QS to a profile Hidden Markov Model (HMM) of the RA
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(sequence-to-profile alignments with MUSCLE and MAFFT resulted in a

slightly inferior placement accuracy; data not shown). Because the

re-alignment procedure is not an integral part of the EPA, and future

developments could potentially improve the re-alignment quality, we

present results for the EPA with and without HMMER re-alignment.

A third method to produce QS involved generating these such that

they correspond to paired-end reads (see Fig. 4c; in this experiment we

excluded data set D140 because it is a multi-gene alignment of amino acid

sequences). Thus, in contrast to the previous method, the position of the

extracted subsequences within the gene remains fixed. This modification

reflects another real-world scenario of the EPA, since paired-end sequencing

is a widely used technique. Once again, we conducted our placement

accuracy assessment on paired-end reads that were artificially generated

from the full-length sequence in question by replacing all characters in the

middle of the sequence by gaps. The artificial paired-end reads were 2x50

bp and 2x100 bp in length.

Comparison to Placements based on pair-wise Sequence Similarity

We conducted our evaluation of the accuracy of the EPA by

comparison to a typical application scenario, in which appropriate

sequence-based search tools such as BLAST are used to assign a QS to the

most similar RS. In this setting, a QS will always be assigned to one of the

terminal edges of the RT. As mentioned above, for the EPA tests we can

choose to re-use the alignment information from the original multiple

sequence alignment from which the QS were generated. With BLAST we
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do not have this option, so all QS will effectively be re-aligned against the

RS. For this reason we compare BLAST against the EPA with and without

previous QS re-alignment using HMMER.

For all tests involving BLAST, we removed all gaps from the multiple

alignment and built a BLAST database for each data set. We also removed

all gaps from the candidate QS and concatenated the two ends of the

artificial paired-end reads into one sequence. Searches with those sequences

were conducted against the corresponding BLAST database. The default

parameters of the BLAST program from the NCBI C Toolkit were used for

character match/mismatch (scores 1 and -3) and gaps (non-affine gap

penalty of -1). The default values from the NCBI BLAST web site with

affine gap penalties were also tested, but produced slightly worse placement

results and higher run times than the default settings. Using BLAST has

the disadvantage that the information stemming from the RA that is

present in the QS cannot be used, so for fairness the BLAST placements

should be mainly compared to EPA placements with previous QS

re-alignment.

For the tests on random gap QS, we did not use BLAST for

comparison, because it is not well suited for aligning such QS. The gap

model as well as the local alignment algorithm rely on contiguous sequence

stretches of certain lengths, which were not present in the random gap QS.

For the random gap evaluation we used a custom distance measure to

calculate the pair-wise sequence similarities as an alternative to BLAST. It

is defined as follows: For the two aligned sequences in question, we count

the number of positions, where two different, non-gap characters are aligned
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with each other. This measure corresponds to the Hamming (1950)

distance, where a gap is a place-holder for any character. Placements

derived from this distance measure will be referred to as sequence-based

nearest-neighbor (SEQ-NN) placements.

Accuracy Measures

To quantify placement accuracy, we used two distance measures based

on the topology and edge lengths of the original ML tree. In all cases, we

considered an original edge and an insertion edge. The original edge is the

one corresponding to the sequence used to generate the QS and into which

it should ideally be re-inserted. The insertion edge is computed by the

EPA. To quantify the distance between the original edge and the insertion

edge we use the following two distance measures: The Node Distance (ND),

is the unweighted path length in the original RT between the two edges.

This corresponds to the number of nodes located on the path that connects

the two edges (Fig. 5a) and represents an absolute distance measure. The

second measure is the sum of edge lengths on the path connecting the two

edges. This measure also includes 50% of the length of the insertion edge

and 50% of the length of the original edge (Fig. 5a). For comparability

between different trees and in order to obtain a relative measure, we

normalize the edge path length by dividing it by the maximum tree

diameter (Fig. 5b). The maximum diameter is the edge path of maximum

length between two taxa in the RT. This distance measure is henceforth

denoted as normalized edge distance (NED%).
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Results and Discussion

Placement Accuracy for Random Gap QS

To assess the influence of QS length and at the same time reduce the

impact of positional variability on placement accuracy, we tested the

accuracy of the EPA on random-gap sequences of various lengths.

Placements were carried out on the 8 data sets for varying artificial read

lengths. Figure 6 provides a detailed plot of the accuracy as a function of

the proportion of gaps, averaged over all candidate QS from all data sets

(respective plots for the individual data sets can be found in the

supplementary material). As a measure of accuracy we use the distance

between the placement position and the true position from which the

respective QS was originally pruned. Therefore, a lower distance indicates

higher accuracy. For each placement method, we show the distances for

three subsets of candidate QS: the disjunct sets of outer QS and inner QS

(see Figure 4), as well as the complete set of QS (all QS).

As expected, the general trend is that placement accuracy increases

with the QS lengths. For all three QS subsets, the EPA achieves higher

placement accuracies than SEQ-NN. Generally, the distances of the EPA

placements are at least two times lower than for SEQ-NN. For SEQ-NN,

the placement accuracy is considerably lower for the inner QS subset

compared to the other QS subsets. Placement based on pair-wise sequence

similarity is harder for inner QS than for the outer QS because the

candidate QS do not have direct neighbors in the RT. This decrease of

placement accuracy is independent of the QS lengths. For the EPA, the
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accuracy is more uniform across the three QS subsets. Only for short QS

there is a slight accuracy decrease for inner QS (this effect is more

pronounced for the NED% measure). With increasing QS length, the EPA

placements become almost equally accurate for the three QS subsets. It is

worth noting that, on average, the EPA correctly places almost all QS from

all three subsets, when they contain less than 50% gaps. The results

suggest that there is a steady increase in accuracy for increased QS lengths

up to the ‘perfect’ placement on our test sets. This is particularly

promising because read lengths will further increase.

The EPA placements on the inner QS compared to the outer QS are

especially encouraging because this subset represents a worst-case scenario

with respect to taxon sampling in the RT. In contrast to SEQ-NN, the

original QS position has negligible impact on the placement accuracy. The

results on this subset are indicative for the performance on data sets with a

sparse or inadequate taxon sampling. Since it is hard to determine an

adequate taxon sampling a priori for an unknown microbial community, our

approach therefore can be used to appropriately adapt the taxon sampling.

Placement Accuracy for randomly selected Subsequences

Table 2 provides the placement accuracy (according to the ND

measure) for the uniformly sampled contiguous subsequences of normally

distributed lengths (mean: 200 ± 60bp and 70 ± 20 amino acid residues).

The table values represent distances between the placement positions and

the true positions from which the QS have been pruned. A ND of 0

represents a perfect placement, larger values indicate larger placement
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errors. As in the previous section, we show separate results for outer QS,

inner QS and all QS. In the second column, we show the placement accuracy

of the EPA in terms of ND. For data set D140, this means that, averaged

over all QS, the placements calculated by the EPA are within 0.51 nodes of

the original placements. In the next column, we provide the average ND of

the EPA for the case when the QS have been re-aligned to the RA using

HMMER prior to the placement run. For D140, the average ND is 0.59, so

the additional re-alignment step results in EPA placements that are on

average 1.16 times further away from their original position than EPA

placements without QS re-alignment. The third column gives the average

ND for a BLAST-based approach. For D140, the value of 0.91 corresponds

to placements that are on average 1.78 and 1.53 times further away from

the true position than the EPA and EPA-RA placements. A corresponding

table using the NED% measure is provided in the supplementary material.

In general, the results are comparable to the ND results.

The values for D140 reflect the general trends which apply to most of

the data sets. The EPA placements are on average more accurate than the

BLAST placements, by factors between 1.12 and 2.06. Except for the two

smallest (in terms of number of taxa) nucleotide data sets, the advantage of

the EPA over alternative methods improves for the inner QS. For the

smallest data sets the number of inner QS (see Table 1, remember that we

only select well supported leaves as candidate QS) is very small; thus, this

variation may be attributed to random effects. For the outer QS, the

advantage over BLAST is less pronounced. For two of the larger data sets

(D1604 and D755), the absolute accuracy of the EPA is approximately
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equal for outer QS and inner QS, while there is a larger accuracy decrease

for BLAST. The re-alignment using HMMER (see Table 2 columns EPA

and EPA-RA) before placement by the EPA has only a small negative

impact on placement accuracy. The re-alignment step decreases the

accuracy of the EPA with respect to the two distance measures by factor

1.03–1.2. For one data set only (D628), the combination of EPA and

HMMER was found to be slightly less accurate than placement with

BLAST. We conclude that profile-HMMs as implemented in HMMER offer

a useful method for the addition of short reads to a RA in this scenario,

while there is still room to improve the QS alignment on certain data sets.

In Table 3 we show the placement precision of the EPA and BLAST,

in terms of percentage of QS placed within a certain ND of their true

position. Up to a ND threshold of 10, the EPA with HMMER re-alignment

(column EPA-RA) outperforms BLAST by 2.2–8%. As before, the EPA

without re-alignment has slightly higher accuracy compared to EPA-RA.

For the inner QS subset, the difference between BLAST and EPA-RA is

larger, reaching 19.7% for a ND threshold of 1 (by definition, BLAST

cannot correctly place inner QS, thus ND will be at least 1). Brady and

Salzberg (2009) evaluated Phymm/PhymmBL in a similar experimental

setup, by measuring the classification accuracy of Phymm, PhymmBL and

BLAST at different taxonomic levels. PhymmBL achieved an accuracy

improvement of approximately 6% for PhymmBL over BLAST on

simulated QS.

As previously noted here, there can be position specific effects that

can influence the placement accuracy depending on which part of the gene
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is used to generate QS. To minimize the influence of this position-specific

bias, we sampled multiple QS (at different gene regions) from every input

sequence and report averages in this study. This broad sample of QS along

the gene can also be used to plot the site-specific, mean placement accuracy

over the length of the RA. Accuracy plots for the data sets in this study are

available in the supplementary material. This approach can also be used, a

priori, on a full length sequence alignment to determine appropriate gene

regions for short-read generation.

Placement Accuracy for paired-end Reads

Table 4 provides the overall results of the experiments with virtual

paired-end reads of length 2x100bp (the results for 2x50bp reads are

provided in the supplementary material). Similar to the previous section

the placement accuracies are given in terms of ND and NED%, averaged

over all QS. For D150, the EPA places the QS within 1.26 nodes of their

true position while for BLAST, the average ND of 3.67 corresponds to

placements that are 2.91 times further away from the original position,

relative to the EPA. The table also contains corresponding values for the

NED% measure, which indicate similar results as the ND measure. As in

the previous section the general trend is similar for all data sets. The

accuracy of the EPA placements are on average 1.58–5.87 times better than

for BLAST.

Figure 7 provides histograms for the accuracy distribution of

individual placements computed by the EPA and BLAST for 2x100bp

paired-end reads on data set D855. Respective histograms for all data sets
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on 2x100bp and 2x50bp reads are available in the supplementary material.

The plots suggest that the placement error for both methods follows an

approximate power law distribution. The placements obtained via the EPA

are, on average, closer to the true position and yield smaller maximum

placement errors than BLAST.

Table 4 highlights that the EPA consistently outperforms

BLAST-based placements for paired-end reads and that placements are

approximately twice as accurate on average. Generally, the placement

accuracy for paired-end reads of lengths 2x100bp is better than was

expected from the test with randomly selected contiguous subsequences of

mean length 200bp in the previous section. One contributing factor is that

many of the subsequences in the previous experiment were significantly

shorter than 200bp, because we use normally distributed lengths. There also

appears to exist a positive effect, generated by selecting subsequences from

two distinct regions of the gene (the start and the end) from the original

QS; in combination, phylogenetic information from both ends, may contain

a stronger historical signal than a single, randomly selected subsequence.

Impact of Placement Algorithms and Substitution Models on Accuracy

All preceding computational experiments were carried out using the

most thorough (slow) version of the EPA under the GTR+Γ and WAG+Γ

(AA) models. In this mode, the EPA optimizes edge lengths via the

Newton-Rhapson method for every possible insertion edge on the RT. As

previously mentioned, we also devised a fast version of the EPA where this

optimization is deactivated for QS insertions. These heuristics can speed up
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the EPA by one order of magnitude, when a large amount of QS is being

placed onto a RT. An additional speedup by a factor of 3 to 4 can be

achieved by using the GTR+CAT or PROT+CAT approximations

(Stamatakis, 2006a) of rate heterogeneity.

Figure 8 shows the impact of EPA heuristics and rate heterogeneity

models on placement accuracy for all QS over all data sets (analogous plots

for the individual data sets are available in the supplementary material).

For the slow insertion method, there is practically no difference in

placement accuracy between the Γ model and the CAT approximation. For

the fast insertion method, there is a notable decrease in placement accuracy

for the CAT as well as the Γ models. The decrease is more pronounced for

the outer QS while for the inner QS the effect of using the fast insertion

method is less pronounced. As already mentioned, correct placement of the

inner QS is harder than placement of the outer QS, which have direct

neighbors in the RT. The results of this experiment show that the slow

version of the EPA which includes edge length optimization can produce

better placement results than the fast version, especially when QS are

placed on inner edges of the RT.

Heuristics for Slow Insertions

As shown in the previous section, the loss of accuracy induced by the

fast insertion method is minimal. Nonetheless, a slight accuracy

improvement can be attained by the slow insertion method, especially

regarding the more precise edge length estimate at the insertion position

that can be used for post-analysis purposes. Using the rapid insertion edge
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pre-scoring heuristics already described, it is possible to accelerate the slow

insertion algorithm with little to no impact on placement accuracy. Here,

we evaluate the accuracy trade-offs associated with these heuristics. We

also provide run-time measurements for the EPA and BLAST.

In contrast to the previous accuracy assessments, we do not test the

placement of one QS at a time onto an existing RT from which the QS has

been previously pruned. Instead, we randomly split the alignments into two

subsets that each comprise 50% of the taxa. The first subset is used to infer

a best-known ML tree with RAxML onto which the remaining taxa (of the

second subset) are placed via the EPA. Here, we assume the slow EPA

placements to be the true placements. In this experiment, we reduce the

length of the QS to 50% non-gap characters. The non-gap characters are a

contiguous sequence fragment that starts at the beginning of the respective

sequence; that is, the QS represent roughly the first half of the gene.

Figure 9 shows the accuracy on the largest data set D1604 (placement

of 802 QS onto a RT with 802 RS). The fraction of insertion edges

considered for the slow insertion phase is controlled by the parameter fh.

In the plot the accuracy of the heuristics for values of

fh = 1

4
, 1

8
, 1

16
, 1

32
, 1

64
, 1

128
, 1

256
is shown (i.e., on this dataset approx. 400, 200,

100, 50, 25, 12, 6 out of 1601 possible insertion edges are considered). For

the lowest fh values, there is a visible decrease in placement accuracy

(sharp rise of the curves on the left side of the plot). For 50 or more

insertion edges, the accuracy remains virtually constant. The results

suggest that, on this data set, it is sufficient to more thoroughly analyze

only 50 out of 1601 (fh = 1

32
) candidate insertion edges proposed by the

27



heuristics to obtain the best possible accuracy (even for fh = 1

64
there is

only a very small deviation from the reference placements). Another

important result is that the MP heuristics produce equally accurate

placements as the ML heuristics, for all, except the smallest values of fh.

We conclude that the MP heuristics with a parameter setting of fh = 1/32

(using the Γ model for thorough insertions) are sufficient for achieving

placement accuracy comparable to the reference placement, but with

computational requirements (290 seconds) that are in the same order of

magnitude as a simple BLAST search (216 seconds) of the QS against the

sequences in the RS. Re-alignment of the QS to the RA takes 224 seconds

using HMMER on this data-set. Thus, the combined run time of HMMER

and the EPA is approximately 2.5 times higher than a simple BLAST

search, but still within the same order of magnitude.

The lowest run time (113 seconds) was achieved by using the CAT

model for slow insertions, at the expense of a slight loss in accuracy (i.e., on

average the ND increased by approximately 0.1). Based on the results in

the previous section, we expect the accuracy difference between the CAT

approximation and the Γ model of rate heterogeneity to be negligible in a

real-world scenario.

The differences in accuracy between the fast and slow insertion

methods as well as between the Γ and CAT models are generally larger

than in the previous sections. This is not surprising, given that the setup of

this experiment was not designed to measure the insertion accuracy relative

to an assumed correct position, but the deviation between our best, yet

slowest, method and less accurate, accelerated methods. Here, we do not
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constrain the experiment to QS with high support values in the RT, but

chose QS at random, which may introduce a certain loss of precision to this

evaluation. In addition, the RT (comprising 50% of the taxa in the original

RA) is smaller than in the previous evaluations and thus more sparsely

sampled. Nonetheless, the deviation between the fast and slow EPA

versions amounts to less than half a node on average and the general

finding that slow insertions under CAT are more accurate than fast

insertions under Γ is consistent with previous experiments.

EPA Web-Service

An alpha version of a Web-Server that offers the EPA algorithm is

freely available at

http://i12k-exelixis3.informatik.tu-muenchen.de/raxml and will be

continuously developed and improved. The server runs on a dedicated

machine with 24 AMD cores and 128GB of main memory.

Users can upload RTs and RAs and chose to align QS to the RA with

HMMER or upload an alignment that already contains the QS. When the

QS are to be aligned by the server, they can also be clustered using

UCLUST (http://www.drive5.com/usearch/) prior to alignment with

HMMER. The UCLUST option can be used to reduce the number of reads

that will subsequently be placed and aligned. Finally, the Web-Server also

offers a JAVA-based result visualization tool that uses the Archeopteryx

framework (Han and Zmasek, 2009) and provides a simple visualization of

the read distribution over the RT.
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Conclusion

We have presented an accurate and scalable approach for

tree-dependent sequence comparison and compared its accuracy to sequence

comparison based methods. A tree-dependent approach has methodological

advantages over standard, pair-wise, similarity-based comparative

approaches and the EPA is freely available for download as open source

code and as a web-service. We demonstrate that our approach may be

substantially more accurate than standard techniques used to analyze, for

example, microbial communities. More importantly, we demonstrate that

achieving improved accuracy does not require longer inference times and

that our approach is as fast as a simple BLAST-based search when using

additional heuristics.

The EPA also is relatively straight-forward to parallelize by applying

a multi-grain parallelization technique (Stamatakis et al., 2010). On a

multi-core system with 32 cores and 64GB of main memory, we were able to

place 100,627 QS in parallel into a RT with 4,874 taxa within 1.5 hours.

The application of the EPA is not limited to molecular data only. Berger

and Stamatakis (2010) have used the EPA for the placement of fossil taxa

onto a (molecular) RT of extant species.

A major challenge that remains to be solved consists in aligning the

QS to a given RA. Throughout this paper, we have assumed that such an

alignment was given or that such an alignment can conveniently be

generated by aligning the individual QS to a profile-HMM of the RA.

Ideally, one would like to simultaneously place and align the QS to the
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respective insertion edge. We are currently working on a tree-dependent

alignment procedure for short read QS, which can be closely integrated

with the placement process. Initial tests show that with tree-dependent

re-alignment it is possible to achieve higher EPA placement accuracy than

with re-alignment using profile-HMMs. Another challenge consists of

dealing with the matter of assigning short read sequences to a reference

alignment when there is compositional heterogeneity across the sequences.

This is a particularily important issue if sequences have aquired the same

nucleotide or amino acid composition independently. A final challenge

consists in developing appropriate visualization tools and metrics for

analyzing distributions of reads on trees that have been computed by the

EPA or pplacer programs.
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Table 1: Data sets used for evaluation of the Evolutionary Placement
Algorithm (EPA). The columns contain (from left to right): the name of
the data; the type of the data (N: nucleotides; AA: amino acids); the length
of the data (i.e., number of sites in the alignment); the number of taxa (#
taxa); the number of query sequences (# QS); and the number of inner query
sequences (# inner OS) (for definitions of QS and inner QS, see the main
text).

Data type length # taxa # QS # inner QS
D140 AA 1104 140 95 9
D150 N 1269 150 66 10
D218 N 2294 218 80 14
D500 N 1398 500 205 29
D628 N 1228 628 210 20
D714 N 1241 714 293 61
D855 N 1436 855 344 48
D1604 N 1276 1604 541 83
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Table 2: Accuracy on randomly sampled short subsequences in terms of ND
from the original position. The second column (EPA) shows the average ND
of the EPA placements (using slow insertions under the GTR+Γ model) for
the data sets in question. The third column (EPA-RA) shows the average
ND for the EPA with previous re-alignment using HMMER. The last column
(BLAST) shows the average ND for a BLAST-based approach.

Data EPA EPA-RA BLAST

o
u
te

r
Q

S

D140 0.49 0.58 0.82
D150 1.14 1.2 1.96
D218 1.7 2.01 3.66
D500 1.31 1.37 2.36
D628 2.44 2.95 2.69
D714 1.71 1.82 2.36
D855 2.87 2.97 3.53
D1604 2.26 2.45 2.87

in
n
er

Q
S

D140 0.74 0.71 1.81
D150 3.09 3.1 4.62
D218 2.24 2.66 3.81
D500 2.05 2.37 4.16
D628 3.28 3.65 4.04
D714 1.78 1.93 3.51
D855 3.68 3.74 4.91
D1604 2.23 2.38 3.86
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Table 3: Percentage of QS placed correctly within a certain node distance
(max(ND)) of the original position over all data sets.

max(ND) EPA EPA-RA BLAST

o
u
te

r
Q

S

0 58.4% 56.4% 56.3%
1 71.1% 69.5% 64.1%
2 77.6% 76.0% 69.5%
5 87.9% 86.8% 82.6%
10 94.6% 93.9% 91.9%

in
n
er

Q
S

0 37.0% 35.1% 0.0%
1 64.3% 63.4% 43.7%
2 74.7% 73.1% 56.9%
5 86.5% 85.8% 77.9%
10 94.1% 93.6% 90.5%
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Table 4: Accuracy of the placement of 2x100 bp paired-end reads. The values
given are the node-distance (ND) and the normalized edge distance (NED %).
The methods used are the Evolutionary Placement Algorithm (EPA) (slow
insertions under the GTR + Γ model) and BLAST-based nearest neighbor.

ND NED %
Data EPA BLAST EPA BLAST

o
u
te

r
Q

S

D150 1.14 3.38 0.63 1.76
D218 1.44 4.77 3.6 8.45
D500 0.84 4.88 1.75 7.35
D628 0.56 1.83 0.83 1.83
D714 1.31 3.59 1.77 4.78
D855 2.0 5.98 1.11 3.35
D1604 1.58 3.67 0.79 1.65

in
n
er

Q
S

D150 1.9 5.3 2.23 5.64
D218 4.43 5.21 8.16 9.38
D500 1.59 9.41 3.15 12.24
D628 0.85 2.95 0.55 1.13
D714 1.66 4.9 2.9 7.76
D855 2.9 7.54 2.04 4.61
D1604 1.57 5.3 1.69 4.84

Figure 1: Local optimization of edge lengths for the insertion of a query
sequences (QS) into the reference tree (RT).

Figure 2: Evolutionary identification of 3 query sequences (QS0, QS1, QS2)
using a 4-taxon reference tree.
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Figure 3: Phylogenetic placement of 3 query sequences (QS0, QS1, QS2) onto
a 4-taxon reference tree with insertion support (IS) score.

Figure 4: Illustration of the criterion for the query sequence (QS) selection
and experimental setup. (a) Candidate QS belongs to sub tree of size 2
that is connected to the tree by a well supported edge. It has one other
tip as direct neighbor. QS with this property will be referred to as outer
QS. (b) Candidate QS is connected to the tree by two well supported edges.
QS with this property will be referred to as inner QS. (c) Experimental
setting: re-insert shortened candidate QS in to pruned reference tree. We
use three different ways of generating QS with desirable features: contiguous
subsequences, paired-end reads and random gaps.

Figure 5: Illustration of the tree-based distance measures. (a) Example tree
with two edges (original and insertion edge) highlighted. There are two nodes
on the path, so the node distance is 2. The edge distance corresponds to the
length of the connecting path, where of the two end edges only half of the
edge length is used. (b) Tree diameter which is used to normalize the edge
distance.

Figure 6: Placement accuracy for QS with artificially introduced random
gaps. (a) Average node distance and (b) normalized edge distance (between
insertion positions and real positions).

Figure 7: Histogram showing the placement accuracy, based on node
distances, for the placement of 2x100 bp paired-end reads from D855, using
outer (a) and inner (b) QS.

Figure 8: Average node distance for different versions of the EPA (fast/slow
insertions) algorithm and model types (GTR+Γ, GTR+CAT) on inner QS
and outer QS from all data sets.

Figure 9: Accuracy of the EPA as a function of the number of edges
considered for slow insertion after heuristic filtering.
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