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ABSTRACT

As FPGAs become larger, new fabrics, in particular DSPs,

allow for a wider range of applications, specifically floating-

point intensive codes, to be efficiently executed.

The logarithm is a widely used function in many scien-

tific applications. We present the design of an efficient and

sufficiently accurate Logarithm Approximation Unit (LAU)

that uses a Look-Up Table (LUT) based approximation, in

reconfigurable logic. The LAU has been verified through

post place and route simulations, tested on actual FPGA,

and is freely available for download. An important prop-

erty of the LAU architecture is, that it only requires 2% of

overall hardware resources on a medium-size FPGA (Xil-

inx V5SX95T) and thereby allows for easy integration with

more complex architectures. Under single precision (SP)

the LAU is 11 and 1.6 times faster than the GNU and In-

tel Math Kernel Library (MKL) implementations and up to

1.44 times faster than the FloPoCo reconfigurable logarithm

unit, while occupying slightly less resources. Under double

precision (DP) the LAU is 18 and 2.5 times faster than the

GNU and Intel MKL implementations and up to 1.66 times

faster than the FloPoCo logarithm while occupying signifi-

cantly less resources.

The LUT-based approximation is sufficiently accurate

for our target application and provides a flexible mechanism

to adapt the LAU to specific accuracy requirements.

1. INTRODUCTION

A wide range of scientific applications rely on the compu-

tation of logarithms. Multimedia codes need to estimate,

e.g., log likelihood scores for Gaussian Mixture Models [1]

or Bioinformatics programs for evolutionary reconstruction

under the Maximum Likelihood model [2] need to compute

log likelihood scores of evolutionary trees. The logarithm is

also frequently used to avoid underflow by replacing multi-

plications via additions.
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Many of the applications that rely on the logarithm are

either highly compute-intensive, such as the phylogenetic

likelihood function which represents an important computa-

tional kernel in computational Biology [3, 4] or have real-

time constraints, such as real-time image processing appli-

cations or skin segmentation algorithms [5]. Irrespective of

the specific type of application, the deployment of recon-

figurable logic (FPGAs) represents a common technique to

either speed up applications, prototype hardware designs, or

meet real-time requirements of time-critical applications.

Within the framework of our research on designing a

reconfigurable Maximum Likelihood (ML) based phyloge-

netic co-processor for RAxML [6], we found that only one

FPGA implementation for the logarithmic function on new-

generation FPGAs is available [7]. One can use FloPoCo [8]

to generate the aforementioned logarithm implementation.

While this implementation provides high numerical preci-

sion, that might nonetheless not always be required, it has a

relatively low clock frequency. Therefore, depending on the

application, a significantly faster and slightly less accurate

logarithm implementation may be preferable. To this end,

we designed a reconfigurable floating point logarithm unit

that operates at a significantly higher frequency than the ex-

isting FPGA implementation and returns an approximation

of the logarithm. Since the logarithm is a fundamental func-

tion, we are convinced that this unit will be useful for a wide

range of applications, beyond the scope of our own research.

We present the implementation of a pipelined LUT-based

LAU in reconfigurable logic. The LAU design is highly effi-

cient, both in terms of amount of reconfigurable fabric used

(2% of hardware resources on a medium-size FPGA) as well

as with respect to clock frequency and latency.

In addition, the LAU can be easily adjusted to the desired

accuracy, based on the ICSILog approximation method (im-

plemented in software) that has originally been proposed by

Vinyals and Friedland in [9]. The speed of the original al-

gorithm is achieved via a small LUT, that entirely fits in the

cache of the CPU. The LUT-based approach led to a sig-

nificant reduction in execution times [9] attaining speedups

of up to a factor of 11 on different CPU architectures (In-



tel Pentium 4, Intel Xeon, AMD Opteron 875, AMD 64

3000+, Intel Core Duo, AMD 64 X2) compared to the stan-

dard GNU library logarithm implementation.

The architecture we present here, represents a first step

towards an efficient library of basic arithmetic floating-point

functions for new-generation FPGAs. In addition, we ex-

tended the C implementation of the ICSILog algorithm (In-

ternational Computer Science Institute) to support double

precision (DP) arithmetic. We henceforth denote the single

precision software implementation of ICSILog (version 0.6

beta) as SP-ICSILog and our DP software implementation

as DP-ICSILog. Throughout the paper, we denote IEEE-

754 single precision arithmetic as SP and IEEE-754 double

precision arithmetic as DP. By SP-LAU and DP-LAU we

denote the SP and DP FPGA implementations of the LAUs.

We compared the performance of our LAU to ICSILog,

the GNU mathematical library, and the INTEL MKL (Math

Kernel Library [10]) library implementations under SP and

DP. Under SP, we measured speedups of 2 for the SP-LAU

compared to SP-ICSILog, speedups of 11 compared to the

GNU library function, and a speedup of 1.6 with respect to

the Intel MKL logarithm function. Under DP, the DP-LAU

achieves a speedup of 2.6 with respect to DP-ICSILog, a

speedup of 18 compared to the GNU library, and a speedup

of 2.5 compared to the respective MKL function. Further-

more, we compared the SP- and DP-LAUs to the FloPoCo

logarithm (denoted as SP- and DP-FPLog) [7]. The SP-LAU

occupies slightly less computational resources than SP-FPLog

and is 1.44 times faster while DP-LAU occupies signifi-

cantly less resources than DP-FPLog and is 1.66 times faster.

The DP-ICSILog C code as well as the hardware de-

scription are available as open source code for download at:

http://wwwkramer.in.tum.de/exelixis/logFPGA.tar.bz2. The

default hardware configuration that supports both, Virtex 4

and Virtex 5 FPGAs, uses a LUT with 4,096 entries. We

also provide several COE files for different LUT sizes, such

that the LAU can be conveniently reconfigured and adapted

to the precision required by the respective target application.

The rest of the paper is organized as follows: Section 2

describes the underlying ideas of the ICSILog algorithm. In

Section 3 we review related work on logarithmic units for

FPGAs. Our FPGA architecture is described in Section 4.

In the following Section 5, we present speed and accuracy

measurements for the LAUs with a LUT-size of 4,096 en-

tries. We also compare performance and resource utiliza-

tion to the fast FPLog implementations, and assess numeri-

cal stability of RAxML in software using DP-ICSILog. We

conclude in Section 6.

2. THE ICSILOG ALGORITHM

The underlying idea of the ICSILog algorithm consists of
increasing the speed of the logarithm computation by using
a LUT that resides entirely in the CPU cache. The algorithm

exploits the way, by which floating point numbers are rep-
resented in the IEEE-754 standard. An IEEE floating point
number consists of three fields: the sign (sgn), the exponent
(exp), and the mantissa (man). The decimal floating point
value of a number (num) is represented by the sign, followed
by the product of the mantissa and the factor 2exp:

num = (+/−)2exp
∗ man (1)

In order to calculate the logarithm of num, one can use the
multiplicative property of the logarithmic function and de-
compose the computation as follows:

log(num) = log(2exp
∗ man)

= log(2exp) + log(man)

= exp ∗ log(2) + log(man)

Since the real-valued logarithm is only defined for positive

numbers, the sign bit can be discarded. The factor by which

exp is multiplied is a constant and only depends on the base

of the logarithm; one may use loge(2), log2(2), or log10(2)
for instance. Thus, the calculation of the logarithm for an

arbitrary base x, only requires the constant logx(2) and an

appropriately initialized full-size LUT (comprising all val-

ues) for the base x.

The calculation of the first part of the sum: exp ∗ log(2)
requires the floating point representation for the decimal value

of the exponent field. One can use the Xilinx Floating Point

Operator (FPO) [12] to obtain this value. However, we use

a faster LUT-based method (this is a separate LUT that is

exclusively used for this conversion) to obtain the floating

point value which is described in Section 4. In Section 5

we provide a performance comparison between the Floating

Point Operator provided by Xilinx and our approach. Once

the floating point value of the exponent is available, the first

operand of the final addition is calculated by conducting the

multiplication with the constant floating point value.

The calculation of the second part of the sum, i.e., the

logarithm of the mantissa requires the use of a LUT. A naı̈ve

LUT will thus need to contain all pre-computed values for

log(man) which requires 32MB of memory for the SP num-

ber range. Vinyals and Friedland found that the usage of a

32MB full-size LUT only yields insignificant performance

improvements with respect to the GNU implementation [9].

To improve performance and reduce LUT size, they deploy

a quantized mantissa that entirely fits into cache memory. In

Figure 1 we provide a schematic outline of their algorithm

at the bit level.

The mantissa LUT is indexed by using the 23 − q most

significant bits of the mantissa under SP and the 52−q most

significant bits under DP. The variable q is the number of

least significant bits of the mantissa that will be ignored by

the quantization process. Thus, q can be used to appropri-

ately adapt the accuracy and LUT size to the specific re-

quirements of an application. An in-depth study about the

accuracy loss induced by quantizing the mantissa can be
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Fig. 1. Outline of the ICSILog Algorithm.

found in [9]. The trade-off between accuracy and embedded

memory hardware resources will be discussed in Section 5.

3. RELATED WORK

A thorough bibliographical search revealed that alternative

implementations of fast logarithm algorithms mostly repre-

sent special purpose solutions that are specifically targeted

at a respective application or hardware platform, i.e., there

is a lack of a generally applicable solution. Thus, to the best

of our knowledge, our work represents the first implemen-

tation of a reconfigurable logarithmic approximation unit on

new-generation FPGAs with DSPs as well as the first imple-

mentation of the ICSILog algorithm on reconfigurable logic.

There have been reported algorithms that calculate ap-

proximations of the logarithmic function [9, 11] in software

in order to speed up specific multimedia applications. This

underlines that the trade-off between precision and compu-

tational resources used is still an open problem and also

strongly depends on the target application. In 2001 L. de

Soras proposed and made available an algorithm called Fast-

Log [11]. This algorithm computes a 3rd order Taylor se-

ries approximation of the logarithm for any given IEEE-754

floating point number. The algorithm is fast, but lacks ac-

curacy in certain cases [9]. The LUT-based approach of IC-

SILog, which we implemented in reconfigurable logic, is as

fast as Fast-Log, but provides better accuracy [9].

Recently, Dinechin et al. presented FloPoCo (Floating-

Point Cores), an arithmetic core generator for FPGAs [8].

The logarithmic unit generated by FloPoCo (FPLog) sup-

ports SP (SP-FPLog), DP (DP-FPLog), as well as user-defined

number formats. The FPLog units yield exactly the same re-

sults as the respective GNU functions, hence accuracy com-

parisons between our LAU and FPLog are identical to com-

parisons between the LAU and the GNU library.

Section 5 includes a direct comparison between the LAU

and FPLog units (using the most recent version 1.15.1 of

FloPoCo) in terms of speed and resource utilization on a

Virtex 5 FPGA. It is worthwhile to point out that, the FPLog

input coding slightly differs from the IEEE-754 standard.

2046 − X

0 1

LUT

exp

value

sp fp

construct

value

sp fp

construct

LUT

man

mult

add

(6
3

 d
o

w
n

to
 0

)

0 1

63 62 downto 52 51 downto 0

manexpsgn

(61 downto 52)(62)

exp const

v
al

id
 i

n
p
u
t 

si
g
n
al

p
ip

el
in

e 
re

g
is

te
rs

p
r

p
r

sp
ec

ia
l 

ca
se

 d
et

ec
to

r

IEEE 754 double precision floating point value

special case value

log(input) valid output signal

Fig. 2. Block diagram of LAU.

Two extra bits in every input vector indicate whether the in-

put should be treated as one of the values: zero, nan, (+/-)inf

or as a normal number. This partial lack of compliance with

the IEEE-754 standard requires additional logic (which can

also be separately generated by FloPoCo) to appropriately

set these bits, in order to integrate an FPLog component

into a design that relies on the IEEE-754 standard. Further-

more, a common FPGA design technique relies on develop-

ing event-driven architectures. The FPCLog interface does

not include signals to indicate whether the values of the in-

put and output ports are valid or not. As a consequence, the

lack of such signals yields FPLog harder to integrate with

event-driven architectures.

4. THE LAU ARCHITECTURE

In the following we describe the design of a reconfigurable

architecture for the ICSILog algorithm. In Figure 2 we pro-

vide the block diagram of the top-level unit.

The leftmost module is the special case detector. As

the name suggests, this module assesses whether the input

to the LAU is valid or not. Special cases are: negative num-

bers, nan, −inf and inf as defined by the IEEE standard.

Since the logarithm is not defined on negative numbers the

result is nan. For nan and −inf inputs the result is de-

fined as nan as well. For an inf input the unit will return

inf again. The module consists of comparators, logic gates,

and pipeline registers that detect the special case inputs and

produce the respective output. The module also outputs a

selection signal for the final 2to1 multiplexer (bottom left in

Figure 2) that is connected to the output port of the LAU.

To the right of the special case detector in Figure 2, we



have integrated a group of modules that operate on the input

exponent bits. These modules compute the first operand of

the addition that returns the approximation of the logarithm.

Initially, the decimal value of the exponent field needs

to be transformed into a floating point number. The straight-

forward approach to implement this operation is to use the

Xilinx FPO [12] (fixed-to-float) operator. However, we de-

ploy a LUT-based approach to carry out this transformation

more efficiently. The exp LUT lookup table in Figure 2

is used for this purpose. Note that, this LUT is a special

component of our hardware implementation and should not

be confused with the mantissa LUT of the ICSILog algo-

rithm (man LUT). More details about the specific perfor-

mance and resource trade-offs between our approach and the

alternative design using the Xilinx FPO are provided in Sec-

tion 5.3.

Internally, all operations are conducted under SP. For the

SP-LAU the exp LUT contains 128 entries (28−1), while for

the DP-LAU there are 1024 entries (211−1), where 8 and 11

is the number of bits that represent the exponent field of a

SP and DP value respectively. The reason why the size of

the exp LUT can be reduced by 50% is explained in the next

paragraph. Each entry of the exp LUT contains a total of 9

bits in the SP-LAU and 13 bits in the DP-LAU. The first 3

bits under SP and the first 4 bits under DP are the least sig-

nificant bits of the exponent field of the floating point num-

ber representation we intend to construct. The remaining 6

(SP) and 9 bits (DP) are the most significant bits of the man-

tissa. The remaining bits of the exponent field are always set

to 10000 for SP and 1000 for DP. Note that, at this point a

SP value is being constructed for the DP-LAU as well. The

remaining bits of the mantissa are all set to zero.

One can observe that there is a correspondence between

the decimal values of the exponent field and the exponents

themselves. For DP, while the decimal value ranges from

0 to 2,047 the exponent ranges from -1,023 to 1,024. Ta-

ble 1 illustrates this correspondence which can be used to

reduce the size of exp LUT by 50%, via only storing the bits

required to represent floating point numbers in the range 0-

1,023. To support the full range (0-2,047) we use additional

logic. More specifically, the 11-bit mantissa is transformed

into a 10-bit index for exp LUT by subtracting the 11-bit

value from 2,046. For example, a 11-bit index with a dec-

imal value X in which the most significant bit is set, in-

dexes a lookup table entry > 1, 023. Hence, X − 1, 023
provides the distance from the last entry of the lookup table

with 1,024 entries. Thus, 1, 023−(X−1, 023) = 2, 046−X

will yield the correct 10-bit index for a exp LUT with half

the size. The most significant bit of the exponent field (dis-

carded from the index) becomes the sign of the newly con-

structed floating point value. After this transformation, the

resulting floating point number becomes the first operand of

the multiplication; the second operand is a constant value.

decimal value of exponent field -1023 exponent

0 -1,023 -1,023

. . . -1,023 . . .

1,023 -1,023 0

. . . -1,023 . . .

2,047 -1,023 1,024

Table 1. Correspondence between the decimal value of the

exponent field and the exponent.

The overall result produced by this part of the architecture

is the first operand of the final addition: exp ∗ log(2) +
log(man). The man LUT module in Figure 2 is the stan-

dard quantized LUT of the ICSILog algorithm and contains

pre-calculated values of logarithms. We therefore used IC-

SILog to generate the contents of man LUT. As previously

described, the most significant bits of the mantissa are used

for indexing the man LUT. Each entry of the table (for SP

and DP values) consists of a SP floating point number. As

outlined in the next Section one can increase the accuracy

of the LAU by increasing the size of man LUT. For exam-

ple, for a man LUT of size 4,096, only the 12 most signifi-

cant bits of the mantissa field of the input value will be used

for indexing. Both lookup tables (exp LUT and man LUT)

are enhanced by a construct sp fp value unit. These units

consist of logic gates, registers, and multiplexers which are

used to construct the correct floating point representations

from the respective LUT entries. Finally, the sum of the two

values generated by exp LUT, man LUT, and the respective

construct sp fp value units will return an approximation of

the logarithm that is identical to the ICSILog software.

As already mentioned, all operations are conducted un-

der SP. Thus, for the SP-LAU, the result is simply the output

of the final adder. For DP, the result is transformed into DP

by appropriately adapting the bit indices of the SP represen-

tation. The least significant bits of the mantissa are set to

zero, and a bit extension for the most significant bits of the

exponent is conducted while maintaining its sign.

The usage of SP arithmetic, even for the DP-LAU, does

not affect the precision of the output because of the approx-

imation strategy that is being used. DP will only be affected

if a man LUT with more than 223 entries is used (23 is the

number of bits in the mantissa field of IEEE SP numbers).

In this case the mantissa LUT would require 32MB of mem-

ory. Currently, there is no FPGA available with such a large

amount of embedded memory. Clearly, the savings in terms

of FPGA resources (embedded memory and DSP slices) by

internally using SP for our LAU design are significant. Note

that, in our DP-ICSILog software implementation, we trans-

formed the entire algorithm to DP, because the SP algorithm

with a type casting operation from float to double in C

was slower than a direct implementation under DP.



# block rams (18Kb) LUT entries average error

1 512 0.000352

2 1,024 0.000176

3 2,048 0.000088

6 4,096 0.000044

12 8,192 0.000022

24 16,384 0.000011

48 32,768 0.000005

Table 2. Average LAU error and man LUT # of block rams.

5. EXPERIMENTAL RESULTS

Initially, we verified the functionality of the LAU (Section 5.1)

and assessed its accuracy (Section 5.2). Thereafter, we pro-

vide a detailed resource usage analysis (Section 5.3). A

thorough run time comparison is presented in Section 5.4.

Section 5.5 presents a performance and resource utilization

comparison with the FloPoCo logarithm [7]. Finally, in Sec-

tion 5.6 we investigate the behavior of RAxML [6] using

DP-ICSILog. Note that, all results in Section 5 refer to Xil-

inx reports after the implementation process (post place and

route).

5.1. Verification

In order to verify correctness of the proposed architecture,

we conducted extensive post place and route simulations as

well as tests on an actual FPGA. As simulation tool we used

Modelsim 6.3f by Mentor Graphics. For hardware verifi-

cation we used the HTG-V5-PCIE development platform

equipped with a Xilinx Virtex 5 SX95T-2 FPGA. The ad-

vanced verification tool Chipscope Pro Analyzer was used

to monitor the output port of the SP- and DP-LAUs and the

expected signals for given input numbers were tracked.

5.2. Accuracy Assessment

Initially, we used benchmarks with 2 ∗ 107 random numbers

to measure the average error introduced by the logarithm

approximation with respect to the GNU function for imple-

mentations of the LAU with various LUT sizes. The results

are provided in Table 2. We used the ICSILog software to

generate the contents of man LUT, such that it yields ex-

actly the same results as ICSILog. From Table 2 we deduce

that a LUT with 4,096 entries represents a good trade-off

between accuracy and LUT size for our purposes, since a

LUT of this size only requires 3 block rams (36Kb each).

For a medium-size new-generation FPGA, like the Xilinx

Virtex 5 SX95T, 3 block rams correspond to only 1% of the

total block memory available. As discussed in [9] the size

of the LUT increases exponentially for every additional cor-

rect bit in the mantissa. Clearly, a specific target application

Program/Unit Min Max Avg MSE

SP-ICSILog 4.228e-7 1.210e-4 4.438e-5 2.689e-9

DP-ICSILog 3.140e-9 1.205e-4 4.437e-5 2.688e-9

DP-LAU 4.228e-7 1.210e-4 4.437e-5 2.690e-9

SP-MKL 0.0e-0 3.815e-6 5.003e-7 1.65e-14

DP-MKL 0.0e-0 4.44e-16 4.52e-22 4.93e-38

Table 3. Min, max, average, and mean squared error of log-

arithm implementations with respect to GNU functions.

Resources LUT FPO

Slice registers 32 46

Slice LUTs 19 64

Occupied slices 20 19

# of LUT Flip Flop pairs 48 45

# of BRAMS (18Kb) 1 0

Table 4. Resource usage by LUT-based approach and Xilinx

FPO for transformation of exponent to SP number.

as well as a global view of the entire reconfigurable sys-

tem that will use the LAU is required to determine the ideal

man LUT size. Since the software implementation is avail-

able as open-source code, it is easy to assess the required

mantissa LUT size a priori, i.e., before modifying the recon-

figurable architecture.

In our specific case (RAxML) we found that a size of

4,096 entries is sufficient to ensure numerical stability of

the code and accurate results (see Subsection 5.6). The over-

all architecture for RAxML requires memory and reconfig-

urable fabric for other purposes. Therefore, we chose to

minimize the hardware resources for the execution of the

logarithmic function to the largest possible extent.

For a man LUT with 4,096 entries we also measured the

minimum, maximum, average, and mean squared error be-

tween the GNU SP and DP library functions and the respec-

tive logarithmic approximation implementations: SP-/DP-

ICSILog, DP-LAU, SP-/DP-MKL library functions. Table 3

provides these errors for 106 random input numbers ranging

from 10−20 to 1020.

5.3. Resource Requirements

The LAU was mapped to a Xilinx Virtex 5 SX95T-2 FPGA.

The columns of Table 11 that refer to the LAUs provide

the amount of computational resources occupied by the SP-

LAU and DP-LAU with a LUT size of 4,096. Table 11

demonstrates that we have achieved one of our major de-

sign goals, i.e., to devise a sufficiently accurate logarithmic

unit by using a minimum of resources.

The clock frequencies of the LAUs were measured using

the respective Xilinx Tools (ADVANCED 1.53 speed file)



# samples SP-GNU SP-ICSILog SP-LAU

103 0.03290 0.00620 0.00301

106 32.40 6.31 2.93

108 3315 595 293

Table 5. Execution times (in ms) of GNU, ICSILog, and

LAU SP implementations for 103 up to 108 invocations.

# samples DP-GNU DP-ICSILog DP-LAU

103 0.07220 0.01191 0.00319

106 58.40 9.47 3.12

108 5909 899 312

Table 6. Execution times (in ms) of GNU, ICSILog, and

LAU DP implementations for 103 to 108 invocations.

and are shown in Table 12. The clock frequencies are ob-

tained from the static timing report and refer to LAUs with

man LUT size of 4,096 entries. The SP- and DP-LAUs have

the same latency in terms of clock cycles (22) and are fully

pipelined with a throughput of one result per cycle.

In Table 4 we compare the hardware resources used by

our custom LUT-based module and the Xilinx FPO [12]

(configured in fixed-to-float mode) for transforming the ex-

ponent value into a floating point value.

Since the LUT-based approach has a latency of two cy-

cles, we configured the Floating Point Operator to have the

same latency and integrated it into the LAU. We also added

an 11-bit subtractor such that the LAU produces correct re-

sults. The clock frequency of the LAU using the Floating

Point Operator was 60MHz slower than for our LUT-based

approach. When the FPO is configured with the maximum

latency of 6 cycles, the LAU is 5MHz faster than with the

LUT-based approach. However, in this case the total latency

of the LAU increases from 22 to 26 cycles and the FPO re-

quires a larger amount of hardware resources.

5.4. Performance Assessment versus Software

In order to conduct a fair performance assessment of the

LAU, we compared it to a wide range of software implemen-

tations: the SP-/DP-GNU logarithms: logf()/log(), the

SP-/DP-MKL logarithms: vsLn()/vdLn(), and the SP-

/DP-ICSILog algorithms. As hardware platform we used

a V5SX95T-2 FPGA (speed grade -2) with one LAU. The

software implementations were executed on an Intel Core2

Duo T9600 processor running at 2.8GHz with 6MB of L2

Cache. All software (SP-/DP-ICSILog) and hardware im-

plementations (SP-/DP-LAU) tested used a mantissa LUT

with 4,096 entries.

For software tests, we used the GNU gcc compiler (ver-

sion 4.3.2) as well as the Intel icc compiler (version 11.1)

# samples SP-MKL SP-ICSILog SP-LAU

106 4.7 5.3 2.9

107 46.9 50.2 29.3

108 342.9 486.6 292.7

Table 7. Execution times (in ms) of MKL, ICSILog, and

LAU SP implementations compiled with icc.

# samples DP-MKL DP-ICSILog DP-LAU

106 8.0 8.8 3.1

107 77.2 85.1 31.2

108 668.4 839.7 311.9

Table 8. Execution times (in ms) of MKL, ICSILog, and

LAU DP implementations compiled with icc.

in order to fully exploit the capabilities of the Intel CPU.

We only used -O1 for optimization with gcc because with

more aggressive optimizations (-O2 and -O3) the current

SP-ICSILog version yields an average error that is 105 times

larger than the error obtained by compiling the code with

-O1. Thus, the gcc compiler optimizations applied un-

der -O2 and -O3 yield numerically unstable code. When

icc is used, SP-ICSILog produces the expected average er-

ror, which is in the range of 10−5 for all optimization levels

(-O1, -O2, -O3). When -O2 or -O3 is used with icc, SP-

ICSILog is only 1.09 times faster on average than the GNU

math library. However, when -O1 is used, SP-ICSILog is

on average 4.5 times faster.

Initially, we used the GNU gcc compiler (version 4.3.2,

with -O1) and measured the execution times for 103 up to

108 invocations of the GNU library SP function as well as

SP-ICSILog. Note that, we used the most recent version of

the SP-ICSILog algorithm, which is faster than the initial re-

lease of the ICSILog software. According to the benchmark

that is made available by the authors the current version is

approximately 1.7 times faster than the initial version (when

compiled with gcc and -O1). Table 5 shows the execu-

tion times for the GNU implementation, SP-ICSILog, and

the SP-LAU. The SP-LAU is 11 times faster than the GNU

function and two times faster than SP-ICSILog.

As already mentioned, the standard release of ICSILog

is only available for SP input values. Furthermore, it does

not provide built-in error detection/correction for special-

case inputs like nan, inf,−inf or negative numbers which

is critical for applications like RAxML. In order to conduct

a fair performance evaluation of the DP-LAU, we therefore

re-implemented the ICSILog algorithm to support DP inputs

and invalid input detection. Our new DP version of ICSILog

(DP-ICSILog) is only 1.5 times slower than the official SP

release by Vinyals and Friedland. DP-ICSILog is also freely

available for download together with the LAU architecture.



# samples DP-GNU DP-ICSILog

-O2 -O3 -O2 -O3

103 0.0779 0.0758 0.0119 0.0119

106 57.82 57.34 8.50 8.42

108 5,692 5,678 799 798

Table 9. Execution times (in ms) of GNU, ICSILog, and

LAU DP implementations compiled with gcc and -O2/-O3.

# samples DP-MKL DP-ICSILog

-O2 -O3 -O2 -O3

106 8.0 8.0 8.1 8.1

107 64.1 60.9 77.9 77.7

108 619.6 601.8 769.8 769.6

Table 10. Execution times (in ms) of MKL, ICSILog, and

LAU DP implementations compiled with icc and -O2/-O3.

For assessing DP performance we used gcc (-O1) and

measured execution times for 103 up to 108 invocations of

the GNU, DP-ICSILog, and DP-LAU logarithm functions

(Table 6). The DP-LAU is 18.8 times faster than the GNU

math library and 3 times faster than DP-ICSILog which in

turn is up to 6.5 times faster than the GNU implementation.

For our second set of experiments, we used the Intel

icc compiler (version 11.1, optimization flag -O1). We

also used the fast logarithm implementation provided by the

Intel Math Kernel Library (MKL) for 106 to 108 invocations

on random numbers as in the preceding experiments.

Tables 7 and 8 show the execution times for the SP and

DP MKL, ICSILog and LAU implementations respectively.

The SP-LAU is 1.6 times faster than the MKL logarithm and

1.8 times faster than SP-ICSILog. Unfortunately, a detailed

description of the MKL logarithm implementation is cur-

rently not available. The DP-LAU is 2.4 times faster than the

respective MKL implementation and 2.7 times faster than

DP-ICSILog which is almost as fast as the DP-MKL func-

tion (speedups vary from 0.8 to 0.9).

As already mentioned, SP-ICSILog becomes unstable

when optimization flags -O2 or -O3 are used with gcc.

Therefore, we only assessed the performance impact of us-

ing -O2 and -O3 with gcc on DP-ICSILog. We compare

DP-ICSILog execution time against the remaining DP im-

plementations: DP-GNU, DP-MKL, and DP-LAU. Table 9

provides the execution times of DP-GNU and DP-ICSILog

for 103 to 108 invocations of the gcc-compiled code. The

DP-LAU is 18.8 times faster than the GNU math library

and 2.6 times faster than DP-ICSILog which in turn is up

to 7 times faster than the GNU implementation (for -O2

as well as -O3). Table 10 provides respective execution

times under DP for the same experimental setup, but us-

ing the Intel icc compiler instead. The DP-LAU is 2.2
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Fig. 3. LAU frequencies with respect to LUT size.

times faster than the respective MKL implementation and

2.5 times faster than DP-ICSILog which is as fast as the

DP-MKL function. Speedups between DP-ICSILog and the

DP-MKL function vary between 0.83 and 0.98 for both op-

timization levels -O2 and -O3.

Finally, Figure 3 shows the clock frequencies of the SP-

LAU and DP-LAU for man LUT sizes ranging between 512

up to 32,768 entries. The observed frequency reduction is

because of the increasing logic requirements of the LAU,

basically block rams. The number of block rams required

increases exponentially for every extra bit added to the man-

tissa field which is used as an index for man LUT while

the increase of the other resources is significantly slighter,

i.e., a LAU with a 32,768 entry man LUT size occupies

700% more 36Kb block rams than a LAU with a 4,096 en-

try man LUT size while only 15% more slices and 9% more

Slice LUTs are required.

5.5. Performance Assessment versus Hardware

To the best of our knowledge, the only open-source loga-

rithm for FPGAs is the one provided by FloPoCo [8]. As

mentioned in Section 3 the FPLog operator yields the same

results as the GNU logarithm, thus we only compared the

SP-/DP-LAUs to the SP-/DP-FPLogs in terms of performance

and resource efficiency. Table 11 provides the hardware re-

sources occupied on a Virtex 5 SX95T-2 FPGA. The SP-

LAU occupies slightly less resources than SP-FPLog while

DP-LAU needs significantly less resources than DP-FPLog.

Table 12 provides a performance comparison between the

logarithm implementations. The SP- and DP-LAUs oper-

ate at significantly higher frequencies than SP-/DP-FPLogs.

Thus, the FPLog units are more likely to lie on the criti-

cal path of a larger architecture that needs to calculate loga-

rithms.



SP DP

Resources-Total FPLog LAU FPLog LAU

slice registers-58,800 992 932 2,763 970

slice LUTs-58,800 909 621 2,482 634

occupied slices-14,720 375 363 795 360

# 36k blockRAM-244 2 3 4 3

# 18k blockRAM-488 2 1 18 1

# DSP48Es-640 5 3 14 3

Table 11. Resource usage: LAUs vs FPLogs.

SP DP

Performance FPLog LAU FPLog LAU

Clock Latency 20 22 34 22

Frequency 244.7 353.5 192.3 320.6

Table 12. Performance comparison: LAUs vs FPLogs.

5.6. DP-ICSILog in a Real-World Application

We integrated DP-ICSILog into RAxML [6], which is a wide-

ly used tool for inferring phylogenies (evolutionary trees)

from molecular data that has been developed in our group.

The vast majority of logarithm invocations is conducted when

the log likelihood scores for alternative tree topologies are

computed. Table 13 indicates the respective log likelihood

scores for tree searches using the GNU and DP-ICSILog im-

plementations on various DNA datasets with 150, and 218

organisms (sequences) as well as a protein dataset with 140

organisms. Based on the standard statistical significance

tests used in phylogenetics, the difference of log likelihood

scores among the respective trees is not statistically signifi-

cant, hence DP-ICSILog with a LUT size of 4,096 provides

sufficient accuracy for our application.

6. CONCLUSION & FUTUREWORK

We presented a new architecture that efficiently calculates an
approximation of the logarithm in reconfigurable logic un-
der SP and DP arithmetic and only uses 2% of resources on
medium-size FPGAs. The SP-/DP-LAUs (LUT size:4,096)
as well as the DP software are freely available. To the best of
our knowledge, this represents the only IEEE-754 compati-
ble implementation of a resource-efficient logarithm approx-
imation unit in reconfigurable logic. Since the accuracy de-
mands of such a basic unit strongly depend on the target ap-
plication, we also make available several COE files that can
be used to initialize LUTs of various sizes and hence easily
adapt the LAUs to the desired accuracy level. Except for an
increase of block ram usage to hold the mantissa LUT, the
proportion of required hardware resources will only slightly
increase (see Section 5.4) if the LUT size is increased and
the speed will only slightly decrease (see Figure 3). Future
work will focus on the development of a resource-efficient

Dataset DP-GNU DP-ICSILog

150 organisms -39606.31 -39606.60

218 organisms -134173.86 -134167.56

140 organisms -124777.22 -124780.10

Table 13. Log-likelihood score deviation with DP-ICSILog.

unit for the exponential function.
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