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ABSTRACT

Motivation: ~ The current molecular data explosion poses new
challenges for large-scale phylogenomic analyses that can comprise
hundreds or even thousands of genes. A property that characterizes
phylogenomic datasets is that they tend to be gappy, that is, can
contain taxa with (many and disparate) missing genes. In current
phylogenomic analyses this type of alignment gappyness that is
induced by missing data frequently exceeds 90%. We present
and implement a generally applicable mechanism that allows for
reducing memory footprints of likelihood-based (ML or Bayesian)
phylogenomic analyses proportional to the amount of missing data
in the alignment. We also introduce a set of algorithmic rules to
efficiently conduct tree searches via subtree pruning and re-grafting
moves using this mechanism.

Results: On a large phylogenomic DNA dataset with 2,177 taxa,
68 genes, and a gappyness of 90% we achieve a memory footprint
reduction from 9GB down to 1GB, a speedup for optimizing Maximum
Likelihood model parameters of 11, and accelerate the SPR tree
search phase by factor 16. Thus, our approach can be deployed to
improve efficiency for the two most important resources, CPU time
and memory, by up to one order of magnitude.

Availability: Current open-source version of RAXML v7.2.5 available
athttp://wwkraner.in.tum de/exelixis/software. htnm .
Contact: stamatak@cs.tum.edu

1 INTRODUCTION

In this article we study the time- and memory-efficient exeruof
subtree pruning and re-grafting moves for conducting tesgches

on gappy phylogenomic multi-gene alignments (also known a

super-matrices) under the Maximum Likelihood (ML, Felgeirs
(1981)) model by example of RAXML (Stamatakis, 26p6While

we use RAXML to prove our concept, the mechanisms presente8
here can easily be integrated into all Bayesian and ML-based
programs that conduct tree searches and are hence preadmina

limited by the time and space efficiency of likelihood congiigns
on trees. Typically, likelihood computations account f&rt8 95%
of overall execution time in Bayesian and ML programs (Stiaia
& Oftt, 200&; Suchard & Rambaut, 2009; Pratas al, 2009).
Moreover, the space required to hold the probability vectirthe
likelihood model (the ancestral probability vectors that assigned

*to whom correspondence should be addressed

to the inner nodes of the tree) also largely dominates theanem
consumption of likelihood-based programs. While spacetand
requirements can be reduced by using the CAT approximation
of rate heterogeneity (Stamatakis, 2BP&nd/or single precision
instead of double precision floating point arithmetics (ier&
Stamatakis, 2009; Suchard & Rambaut, 2009; Peical., 2010),
there exists an urgent need to further improve the comouiaiti
efficiency of the likelihood function because of the bio gépat

is, the fact that molecular data accumulates at a faster pace
than processor architectures are becoming faster (seeeFiu

in Goldman & Yang (2008)).

As Bioinformatics is coming off age and because the comngunit
is facing unprecedented challenges regarding the scfjabitd
computational efficiency of widely used Bioinformatics @tions,
we believe that work on algorithmic engineering aspectd wil
become increasingly important to ensure the success ofetake fi

The largest published ML-based phylogenomic study in terms
of CPU hours and memory requirements already required 2.25
million CPU hours and 15GB of main memory on an IBM
BlueGene/L supercomputer (Hejretial, 2009). Moreover, we are
receiving an increasing number of reports by RAXML userg tha
intend to conduct phylogenomic analyses on datasets thatree
up to 181GB of main memory under the standdrdnodel of
rate heterogeneity (Yang, 1994) and double precisionrasgtits.
Memory consumption is therefore becoming a limiting fadiar
phylogenomic analyses, especially at the whole-genonie.sca

Initial work by Stamatakis & Ott (2008 on methods for
efficiently computing the likelihood on phylogenomic aligants
with missing data focused on computing the likelihood and
Soptimizing branch lengths on a single, fixed tree topology
using pointer meshes. Here, we address the conceptuallg mor
difficult extension of this approach to likelihood model paeter
ptimization (for parameters other than branch lengths) @ee
earches which entail dynamically changing trees. We tescr
and make available as open source code, a generally agplicab
framework to efficiently compute the likelihood on dynantiiza
changing tree topologies during a SPR-based (Subtree rigruni
Regrafting) tree search. Search algorithms that rely on @BRes
represent the most widely used tree search technique érafdhe-
art programs for phylogenetic inference.

In addition, we implement full ML model parameter optimipat
under the proposed mechanism and also take advantage of the
memory footprint reduction potential that was only mengidn

© Oxford University Press 2005.



Stamatakis and Alachiotis

Gene 0

e

Gene 1
Aligned Sequence Dat

Taxon 0
Taxon 1
Taxon 2
Taxon 3
Taxon 4

\ Missing Data

Fig. 1. A gappy phylogenomic multi-gene alignment with a gappyrafss
40% (40% of the data are missing).

as a theoretical possibility by Stamatakis & Ott (2bP8vithout
providing an actual implementation.

2 UNDERLYING CONCEPT

The underlying idea of our mechanism to accelerate likeliho
computations is that, we do not need to conduct computations
allocate memory for data that is not present in gappy phylogec
alignments. Typically, a large fraction (50-90%) of phyogmic
alignments consists of undetermined characters that aeel us

to denote the complete absence of sequence data for speci

gene/taxon pairs.

Thus, given two genesg;, andG; that comprise a total of taxa,

a sequence for both genes will not be available for everyrtasay
some taxa, molecular data will only be available & and for
others only forG,. The missing per-gene sequences for each taxo
are then usually just filled up with undetermined charactéigure 1
provides an example of such a gappy multi-gene dataset witle s
missing sequence data in each gene.

Given the way undetermined characters are modeled in m
current phylogenetic likelihood function implementasiprwe can
observe that adding a taxon that consists entirely of gapa to
tree at an arbitrary branch, will not change its likelihodthis
method is used in all popular likelihood-based program$ g
GARLI (Zwickl, 2006), PHYML (Guindon & Gascuel, 2003),
MrBayes (Ronquist & Huelsenbeck, 2003), PhyloBayes (llatti
etal, 2007) etc.

If one conducts a partitioned analysis of the multi-geneaskit
as outlined in Figure 1, and one applies a per-partition-gesie)
estimate of branch lengths, we observe the following: Foivarg

n

SEQ3

Virtual Root

Reduced Tree for Gene 2
L |=——— Global Tree

sEQ4 [ |

SEQ5

Fig. 2. Assignment of the gappy sequences to a tree. Per-gene esibane
connected via a distinct set of pointers for each gene.

memory space for storing ancestral probability vectorg fiemory
footprint reduction that can be achieved is roughly prdpasl to
the gappyness of the respective alignment.

While the above idea per se is simple, the key challenge snsi
of designing rapid methods to extract the subtrees induged b
genes from the comprehensive treand to maintain the pointer
meshes that are used to keep track of the per-gene tree gigmlo
(see Figure 2) in a consistent state. Moreover, conductieg t
searches using, for instance, SPR moves, requires a sdesftou
dynamically update the pointer meshes since an efficienbarésm
to quickly derive whether a specific SPR move induces a change

]jn an individual per-gene subtree is required. Because ehtbh

(':%mplexity of this approach, a correct implementation ofRSP

moves represents an algorithmic as well as a software ezriiige
challenge.

Our approach is based on three assumptioRsstly, that
the data is partitioned on a per-gene bassgcondly that a
separate set of branch lengths is optimized for every partiand
thirdly, that phylogenomic datasets will remain gappy. While the
first assumption provides a computational argument in fafor

Oé?artitioning phylogenomic alignments on a per-gene b#sésthird

assumption depends on future developments in wet-lab senge
techniques, but it seems likely that the community will beirig
these gappy alignments for at least another 5 years.

3 STATIC MESHES

The usage of static meshes for computing likelihood scones a
optimizing branch lengths has already been described ¢@&dis &

Ott, 200®). Nonetheless, the concepts introduced by Stamatakis &
Ott (200®) are required as a prerequisite for developing the update

tree t that comprises all 5 taxa, we may compute the overallrules for dynamic meshes.

likelihood asLnL = LnL(t|Go)+ LnL(t|G1), whereLnL(t|G;)
is the likelihood of the tree for geneG; restrictedto the taxa for
which sequence data is available in genérhis means that, for

We will initially outline static meshes by example of the tiul
gene alignment provided in Figure 1. The black regions epre
areas of the alignment for which molecular data is availabée,

the example dataset in Figure 1, we only need to compute ahd adhere is data for 3 taxa in gene 1 (SEQ 1, SEQ 2, SEQ 3) and for

the likelihoods of two 3-taxon trees instead of two 5-tax@®es for

genesGy andG; under the standard likelihood implementation.
Restricting the global treketo a per-gene subtree for the available

molecular data therefore allows to save both, a significargust

of floating point operationsas well asa significant amount of

3taxain gene 2 (SEQ 3, SEQ 4, SEQ 5). The shaded gray regions
represent the areas of missing data (undetermined chexpdteve
assume that the two genes, Gene 1 and Gene 2, have the sathe leng
and 2 out of 5 sequences are missing in each gene this aligaen

a gappyness of 40%.
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back pointer

organization for the single—gene case. The memory spacéreeq
by standard likelihood implementations is dominated bylémgth
and number of ancestral probability vectors. Thus, the nmgmo
branch length requirements are of ord@(n * m) wheren is the number of taxa
and m the number of distinct site patterns in the alignment. An
unrooted phylogenetic tree for an alignment of dimensionsm
hasn tips or leaves and — 2 inner nodes, such that— 2 ancestral
vectors of lengthm are required. Note that, the computation of
the vectors at the tips of the tree (leaf-vectors3ignificantly less
expensivand requires less memory than the computation of inner
vectors (Tzeng, 2006).

In RAXML, only one ancestral probability vector per intelrna
node, is allocated. This vector is relocated to one of theethr
outgoing branches of an internal nodeder ec *next (see data
structure below) of the inner node which points towards timeent

We can now consider an assignment of these gappy sequences f5tual root. This concept is also called a view by J. Felsgins

a fixed tree topology as outlined in Figure 2. T@mprehensive because the ancestral likelihood vectors always maintaooted
tree topology that represents the relationships among tatk® for view of the tree.tlowards the current position of the root. .Hét
both genes is represented as a thick black line. In orderrtpuate ancestra] probability vector is alregdy located at theemimutgoing
the likelihood for this tree one can, for instance, placevinmial ~ Pranch (iff. the value ok == 1) it must not be recomputed. To
root into the branch of the comprehensive tree that leadE@Q S move ancestral probability vectors among outgoing brancien

3. In order to account for the missing data and omit unnecgssa inner nodg, a cyclic list of 3 data structures of tynpede (one
computations, one can use a reduced set of branch lengtmoead  PE" outgomg_ branch st r uct '?Oder ec *back) is used (see
pointers that only connects those sequences of Gene 1 aral Geﬁ'gl,Jre 3) which represents a smgiecestra.lnolde of the trge. At

2 (as outlined by the dotted lines in Figure 2) for which semee _all times, two of the entries fax in the cyclic I|st_ rc_epresent_lng an
data is available. This means that, for each gene or partitie inner node are setto = 0; _\_/vhereas the remaining one 1s s_et to
reduce the comprehensive tree topoldglp a per-gene topology, X = 1; . The actual probability vector data is then indexed via the

t|G: (read ag restricted tai,) and|G- by successively removing Node numbenunber. Finally, the vectorz[ NUM BRANCHES]
all branches that lead to leaves for which there is no seawenccoma'nS the branch lengths for every partition that cotséie

data available in the respective gene. In our example (s al present node in the cyclic list to the node that is addres&ethe

Figure 3) the log likelihood of the tree can then simply be pated ~ "€SPectiveback pointer.
asLnL = LnL(t|G1) + LnL(t|G2). In addition, the memory
requirements for storing ancestral probability vectorslmareduced
by factor 3 in this example since only one ancestral vector is
required for each partition instead of 3 vectors under thadsrd
model.

Disregarding slight numerical deviations because of reuifid
errors and a distinct ordering of floating point operatioihsating
point arithmetics are not associative), the above proeedar
compute the likelihood on gene-induced subtrees theathtic
yields exactly the same likelihood score as the standardodeOne
should keep in mind that, numerical deviations in likelil@zores
will increase as more computations are omitted by our amproa
because rounding error propagation will become more pzaval

While the proposed concept is straight-forward, the actual
implementation is significantly more complicated, espéciaith
respect to an efficient mechanism for computing the topology
reductiont|G; for a geneG; using the comprehensive topology
t. Tree searches using, for instance, the SPR (Subtree Bruni
Re-grafting) technique to optimize tree topologies, needb¢
appropriately adapted to determine on-the—fly which aralest . . o . .
probability vectors for which genes need to be updated. &fbes, Using this type of data organization, when the virtual raot i

a mechanism is required to determine which per-gene subaree  Placed into a different part of the tree (for instance, taropte a
changed by a SPR move applied to the comprehensive tree. branch or when the tree topology has been altered), a cexaiber
of ancestral vectors must be recomputed.

The above data-structuneode can be extended as indicated
3.1 Data-Structure for per-Gene Meshes below to accommodate the comprehensive tree topdlagywell as
To describe the implementation of SPR pointer mesh updates ithe per-gene tree topologies as follows: We extend the tlatetsre
RAXML, we initially need to review the memory and data-strue by an array of back-pointetsacks that point to the neighboring

next pointer
Virtual Root

vector located here
means x = TRUE

= Likelihood Vector

Fig. 3. Likelihood Vector Organization.

t ypedef struct noderec

doubl e z[ NUM_BRANCHES] ;
[+ branch | ength arrays =/
struct noderec =*next;
[+ pointer to next structure
in cyclic list
representing one internal node */
struct noderec *back;
[+ pointer to neighboring node */
int nunber;
/* node nunber, used to access
probability vectors */
char x;
[+ probability vector |ocated at
this node? =*/

ode;
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nodes for each per-gene tree. Note that, the address of tke ba continuously re-rooting the tree at the branch to be optuhiZ hus,
pointer of partition O for instance might be located furthemy, that  one can easily use the above data structure to successptétyize
is, backs[ 0] == back does not necessarily hold. In addition, the branches in every gene tree individually. For a moreilddta
the arrayxs[ NUM_BRANCHES] provides analogous information description please refer to Stamatakis & Ott (2008-inally, it is
asx, but for each gene separately. By design, if a certain inneimportant to note that the speedups reported here are srttzie
node represented by a linked cyclic list ohBde structures, does those reported previously (Stamatakis & Ott, 200Because of a
not form part of a reduced tree for Gene|G;, all respective  bug in the branch length optimization convergence critetioder

entries are set to Null and 0 respectivebhacks[i] = NULL;, the standard model, that has been fixed in the latest rele&@s2.b)
xs[i] = 0;. If they do form part of the per-gene tree all three of RAXML.

entries ofbacks[i] != NULL; and one of thexs[i] must be

setto 1.

typedef struct noderec 4 DYNAMIC MESHES

{ Given the prolegomena, we can now introduce the set of rules
struct noderec *backs[ NUM _BRANCHES] ; for per-gene pointer mesh updates that are required to cbndu
/= back pointer array =*/ SPR moves on the above data structure. For this, we need to
char xs[ NUM_BRANCHES] ; consider the pruning (removing a subtree at a specific brahtie
[+ probability vector set array =/ comprehensivéree) and re-grafting (inserting the pruned subtree
doubl e z[ NUM_BRANCHES] ; into branches of the tree) steps separately.
struct noderec =*next;
struct noderec *back; 4.1 Subtree Pruning
I(:E;r ngrrber ; If we prune a subtree from a branch of the comprehensive see a

shown in Figure 4 we have to consider the following cases.

Case 1:If the subtree to be pruned does not contain any data for
genei , the induced gene-tree will be invariant with respect to any
. . SPR moves of that subtree and hence the log likelihboed (¢|G;)

3.2 Computing a Traversal on a fixed Tree will be invariant as well. Therefore, we just need to set peetive

To conduct a tree traversal on a fixed tree for optimizing rhode flag for genei and add the current likelihood for partitionto the
parameters and/or branch lengths, we initially place &lrtoots  likelihood of the other genes that may change because of e S
for each gene separately. For each gene, we may just place tmeove. We can check if the subtree does not contain data farigen
virtual root into the first taxon of the respective partitimn which by a simple recursive descent for partitiomsing the corresponding
data is available. Given a comprehensive tree topology e th pointer mesh in that subtree.

recursively set up a per-gene pointer mesh by navigatimutir Case 2: If the node to which the subtree is attached in the
the comprehensive tree as described by Stamatakis & Ot8(200 comprehensive tree forms part of a gene.e., if all backs[ i ]

The key property of this pointer mesh at any ancestral notteats  are not set toNULL, we store the values of all three outgoing
either all outgoing pointers for a specific partition arete®ULL, or backs[i] pointers and remove the node from the per-gene pointer
all outgoing pointers point to another node in the tree thatains  mesh.

data for the specific gene. That is, a node of the compreletrsg Case 3: If the node to which the subtree is attached in the
either forms part of the per-gene subtree or not. comprehensive tree does not form part of the gend tree proceed

To compute the likelihood, optimize branch lengths, and @hod as follows: Initially, we determine whether data for geneis
parameters for the fixed comprehensive tree, we simply need tcontained in the left or right subtree rooted at the brandmfr
execute Felsenstein’s pruning algorithm individually @erg gene  which the subtree is pruned. If neither the left, nor thetrigibtree
by using the respective pointer meshes and branch lengilaséd  contain data for genie this means that the gene-tree ifois entirely
by *backs[ NUM_BRANCHES] and z[ NUM_BRANCHES] . The contained in the subtree to be pruned. Therefore, we onde sga
dotted lines in Figure 2 indicate the reduced tree datatstres  a respective flag for geriethat there is no work to do and store the
given by thebacks[] arrays (the traversal path for a subtree), current likelihood score for this partition. Otherwiseher the left,
while the straight line represents the overall tree toppl@s  or the right subtree, or both subtrees will contain data fotifion
provided by theback pointers. To achieve the desired memory i . In the case that both subtrees of the pruning branch as well a
reduction for ancestral probability vectors (in contrasttte initial the subtree to be pruned contain data, we connect the nodles in
paper (Stamatakis & Ott, 200B8where this was not implemented), left and right subtrees and prune the subtree. If only onaetwo
for each gene we only assign as much memory as is required faubtrees defined by the pruning branch contains data, thémsne
the number of ancestral nodes contained in the gene-treee 8ie  that the subtree to be pruned is directly connected to a nodee
address ancestral vectors via the noderber , this means that in  of the two pruning branch subtrees.

}

node;

the course of computations, per-gene trees are alwayssesyiesl In all cases where there is work to do, we always store thesnode
by the same nodes in memory, that is, a node that once formred pahat define the left and the right end of the branch (the pgunin
of a gene tree will always from part of that gene tree. branch) from which the subtree is to be removed. Finallyeraft

The branch length optimization procedure works analogpusl pruning the subtree the branch length of the pruning brarmim f
with the only difference thatxs[ NUM BRANCHES] are also  which the subtree was removed is optimized via a Newton-BRaph
updated, since optimizing the branch lengths of a tree iesluc procedure.
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Fig. 4. Pruning of a subtree.

Once we have pruned the subtree and stored the requiredaata,
can start re-inserting the pruned subtree into the remeioidthe
comprehensive tree.

4.2 Subtree Regrafting

The SPR moves are also initially conducted on the compréfens
tree data structure. For each insertion branch in the cdmepsive
tree into which the candidate subtree shall be inserted, mee o
again conduct a case analysis to determine if the specificrs®/e
on the comprehensive tree also induces a change in the gase tr

For the cases described in Section 4.1 where the prunedesubtr
either contains all taxa of a gene or not a single taxon of @gen
i we are done. This is because the SPR move will not induce

any changes tdnL(t|G;). Thus, in this case, we simply add the
stored likelihood of the gene to the overall likelihood wéeimd to
compute.

In all other cases the SPR move on the comprehensivartege
induce changes on the gene tree likelihoods. If we consider t
insertion branch, that is, the branch of the comprehensaeihto
which the subtree shall be inserted we once again need toiete
recursively, if the left or the right subtree of the insemtibranch
contain molecular data for a partition(see Figure 5).

Case 1:if some nodes in the lefand the right subtree of the
insertion branch contain data for partitioras outlined in Figure 5,

subtree for gene i

insertion branch for
gene i

i insertion branch

left subtree .
right subtree

T

comprehensive tree

subtree

Fig. 5. Subtree insertion into a branch, where both the left and sightrees
contain data for a specific gene i.

connection for gene i

comprehensive tree

Node A Node B

~" subtree insertions
identical likelihood
scores for gene i

Fig. 6. Outline of the optimization potential for subtree insamgointo
consecutive branches that have identical left and rightreeb for a specific
gene .

linked list to store and look up the gene tree insertion bmnanc
nodes/likelihood score triplets. For instance, at the firs¢rtion of
the subtree between nodasindB for genei we will look up if the

this means that the two subtrees must be connected by a brancdode pairA, Bis stored in the respective list for partition If this

of the partition, the partition insertion branch, into whithe
subtree shall be inserted. We obtain the per-gene insdntarch by
recovering the two nodes that determine this branch viaarsee
descent into the left and right subtree of the insertion d¢an the
comprehensive tree.

is not the case we will compute the likelihood score and stare
the list. For all successive insertions of the per-genersalitetween
nodesA andB the lookup for partitiori will be successful and we
can hence simply re-use the per-gene likelihood scoreaddsoé
re-computing it.

However, given that each gene tree contains at most as many Case 2:if only a node to the left or the right of the comprehensive

ancestral nodes as the comprehensive tree, it may happeth¢ha
insertion branch for the subtree of partitiotis identical (and hence
the insertion likelihood is identical) for distinct insien branches in
the comprehensive tree as shown in Figure 6. Thus, theHikedi
that is induced by repeatedly inserting the gene sulitrbetween
the two node#\ andB that form a branch of the gene tree is identical.
In other words, for the five subtree insertions of the comgnsive
tree between nodeé and B the tree topology induced for the
gene tred is invariant. Thus, the likelihood score for insertions
of subtreei between node#é and B only needs to be computed
once. To achieve computational savings, we therefore usames

insertion branch contains data for a partitiorthis means that a
subtree for gene is located in one of the two subtrees but not
both. In this case we recursively descend into the subtrae th
contains the data until we find the first node that belongse@tne
treei . If the node is not a leaf, it must be connected to another
node in the same subtree of the comprehensive tree as shown in
Figure 7. As before, we determine whether the candidateeribais
already been inserted into the respective branch of the geady
conducting a lookup in the aforementioned linked list. Baraple,
in Figure 7 the insertion likelihood for gereis identical when the
subtree is inserted into branch¥s Y, Z of the comprehensive
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subtree for gene i Step 1 Step 2pptimize pruning
branch
comprehensive tree
,,,,,,,,,,,,,,,,,,,,,,,, -
! insertion branch ¢
subtreé i prune subtree
Oe. . Y right
N e subtree ;
Step 3: lazy SPR
comprehensive lazy optimization ________
tree insertion of three branches ~~. _ - @@
N 2
insertion subtree N &)
branch for R

genei

Fig. 8. Lazy SPR move technique of the standard RAXML algorithm.
Fig. 7. Insertion of a subtree into a branch at which only one of the tw g y . g

subtrees contains data for gene i.

slow lazy SPR moves implemented in RAXML differ in the way
the three branch lengths adjacent to the subtree insertisitign
tree. If this is not the case we insert the candidate subtmepute 5. optimized. Fast lazy SPR moves use an empirical best gues
its likelihood and add it to the likelihood scores of the rém@  for the three branches, while slow lazy SPR moves deploy the
genes. Newton-Raphson procedure. Note that, other widely used ML-
Finally, if either the left or the right subtree of the comipeesive  pased inference programs like PHYML v3.0 and GARLI also use

insertion branch only contains a single taxon for gertéis taxon  yariants of lazy SPR moves. The lazy SPR move technique is
represents the position from which the gene subtree waseprun oytjined in Figure 8.

This case is already detected at the pruning stage and aopasjape The simplified version of the lazy SPR move technique
flag is set that the likelihood for partitian will not need to be re- implemented here, reads in a given starting tree, optiniizesel
computed for any subtree insertion. parameters and branch lengths, and then applies only ore cyc

of lazy SPR moves to the tree with a rearrangement radius that
is fixed to 10. One cycle of SPR moves means that every subtree
5 IMPLEMENTATION & EXPERIMENTAL SETUP of the comprehensive tree will be pruned and re-inserten afit
neighboring branches of the pruning branch up to a distahd® o
nodes away from the original pruning position.
In addition, unlike the standard RAXML search mechanism the
algorithm will not immediately keep SPR-generated top@sghat
yield an improvement, that is, it only searches for the baszy |

The pointer mesh update rules were implemented in the sdguen
SSE3-vectorized version (Berger & Stamatakis, 2009) of RAx
v7.2.5 (freely available athttp://wwkraner.in.tum
de/ exel i xi s/ software. ht M ; mesh-based methods are

implemented in fileresh. c). _ SPR move on the tree that was provided as input. The algorithm
_ To facilitate verification and comparison of the results, Wegigres the best move on the comprehensive tree and will then
implemented a simplified version of the lazy SPR move tedl@iq ite 1o file the comprehensive tree generated by the best SPR
in RAXML (Stamatakis, 2008). move. For verification purposes, this output tree can thenseel

The lazy SPR move technique of RAXML works as follows: t; jngependently compute likelihood scores on the treelties

Initially, the subtree to be rearranged (the candidatereaptis obtained by the standard method and the fast mesh-baseddneth
pruned from the comprehensive tree topology. Then, only thg, propose here.

branch from which the subtree was pruned is re-optimized via The program will also print out the execution time required f

a Newton-Raphson procedure, as opposed to re-optimizing al,,4e| optimization, the execution time of one SPR cycle, tad
branch lengths in the remaining tree. After this step, westart 05| execution time. The lazy SPR searches can be extositeg

inserting the candidate subtree into the branches of thainemy 54t |5,y insertion and slow/thorough lazy insertions f&ttakis,
tree and compute the likelihood score for each insertion.eiVh 2006a). The respective command lines are:

lazy SPR moves are used, we only re-optimize the three branch

lengths that are adjacent to the insertion position of threiceate . /raxm HPC-SSE3 -f i -C -M-s alignnent. phy \
subtree, instead of re-optimizing all branches of the tegutree. -t startingTree -qg partitions -m GTRGAMVA \
Thereby, we only obtain aapproximatelikelihood score instead -n MESH_FAST

of a maximumlikelihood score for each subtree rearrangement,. /raxm HPC-SSE3 -f | -C -M-s alignnment. phy \

that is, we conduct a lazy evaluation of SPR moves. fHstand -t startingTree -q partitions -m GTRGAMVA \
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Table 1. Speedups of mesh-based likelihood approach
versus standard approach.

-n MESH_THOROUGH

for the mesh-based approach and:

./raxm HPC-SSE3 -f i -M-s alignnent.phy \ Dataset ~ Model Optimization Fast SPR  Slow SPR
-t startingTree -q partitions -m GTRGAMVA \
-n NO_MESH_FAST d59.8 1.30 2.04 1.59
./raxm HPC-SSE3 -f | -M-s alignnent. phy \ d94.1487 5.56 16.69 4.41
-t startingTree -q partitions -m GTRGAMVA \ d12634 1.34 1.79 1.80
-n NO MESH THOROUGH d40411  3.05 4.91 3.51
- - d217768 11.24 16.08 10.26
for the standard approach. d378316 3.86 5.36 3.99

The inferences were conducted under the GTR (Tavare, 1986)
nucleotide substitution model and the WAG (Whelan & Goldman
2001) amino acid substitution model for protein data. Incabes
we used the standaftimodel of rate heterogeneity (Yang, 1994).  Table 2. Total execution times in seconds of mesh-based approashsver

The computational experiments were executed on a singke cor standard approach.
of an unloaded SUN x4600 multi-core machine with 32 cores
and 64GB RAM. The program was compiled wiglcc v4. 3. 2
and the standard Makefile for the sequential SSE3 code that is
distributed with the source files.

Dataset Fast Mesh Fast NoMesh Slow Mesh Slow NoMesh

d59.8 21 32 74 114
d94.1487 7,493 77,960 92,573 408,794
5.1 Datasets d12834 1,106 1,592 2,741 4,523
We used 6 real world DNA and protein datasets containing 59 up d40411 159 597 597 2,066
to 37,831 taxa and 6 up to 1,487 genes. The gappyness bedause 04217768 7,395 87,320 15,455 164,168
d378316 31,597 130,776 94,497 367,139

missing gene data ranged between 27 and 90%. Table 3 irglicate
the gappyness of the alignments used (not counting reairagt
gaps). For ease of reference we denote all datasets by d¥iere

Y indicates the number of taxa and X the number of genes. Batas
d94.1487 is a protein alignment (Hejnet al., 2009), all other
datasets are DNA alignments. All datasets, partition fil@sd
starting trees, except for the unpublished dataset d3B33dre
available for download abt t p: / / wwkr aner . i n. t um de/ Dataset
exel i xi s/ poi nter MeshData.tar. bz2.

Table 3. Gene-sampling induced gappyness and memory
consumption of non-mesh based and mesh-based approach.

Gappyness Memory NoMesh Memory Mesh

d59.8 27.70% 25 MB 19 MB

d94.1487 81.31% 14.0GB 2.8GB
6 RESULTS d12834 28.30% 317 MB 234 MB
. . . d40411  69.15% 378 MB 125 MB

The recursive lookups to search for gene nodes in the pruning d217768 89.53% 9.0GB 1.1GB
branch and insertion branch subtrees are implementeelgaby d378316 75.41% 44.0 GB 14.0 GB

recursive descents into subtrees. While this is algorithityi not
very elegant, the efficiency of this procedure is not critimecause
a profiling run usingypr of on datasets d58 and d40411 revealed
that the recursive search procedures account for less #af tbtal
execution time. On d3783& the contribution may be higher, but a entire alignment and the memory footprint for inferenceslarn
profiling run could not be conducted because of excessivdimes  GTRH' and WAGH" for the mesh-based and standard approach.
and the significant slowdown associated with profiling. The memory savings are roughly proportional to the degree of

In Table 1 we indicate the execution time speedups between thgappyness.
standard implementation and the mesh-based approach fdelmo Finally, in Table 4 we depict the likelihood scores of theete
parameter optimization (denoted as Model Optimizationye@bas  computed independently by optimizing the likelihood scaore
fastlazy (denoted as Fast SPR) and slow lazy SPR searciieddde the resulting SPR modified trees obtained by the mesh-bas#d a
as Slow SPR). Overall, speedups for the fast lazy SPRs tebd to standard method. The scores on the trees were optimized usin
higher than for the thorough lazy SPRs, particularly fot@irodata.  the mesh-based approach to save time, but for the smallesetat

In Table 2 we provide the overall execution times in secondswe also conducted a tree evaluation using the standard agpro
(including file I/O, model optimization, and SPR searches)the  As already mentioned, likelihood scores may be slightlyedént
mesh-based and standard (denoted as NoMesh) likelihoatidan  if model parameters are optimized using the standard approa
implementations using the fast and the more thorough laZy SP because of numerical deviations. It is interesting to olesénat for
moves. thorough lazy SPR moves, the mesh-based approach yiejthtlysli

In Table 3 we provide the gappyness of each dataset, thatetter likelihood scores on dataset d216& and d941487. This
is, the proportion of entirely missing data per gene over thecan be attributed to numerical error propagation, becandertthe
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Table 4. Log likelihoods of final trees generated by mesh and non-mesfysed in this study. We would also like to thank Nick Patteadat

based fast and slow SPR cycles.

Dataset Fast Mesh Fast NoMesh  Slow Mesh

d59.8 -50439.82 -50439.82 -50434.80 -50434.80
d94.1487 -5996718.37 -5996718.37 -5996650.63 -5996707.99
d12834 -779459.01 -779459.01 -779446.71 -779446.71
d40411  -151064.76  -151064.76 -151064.76  -151064.76
d217768 -2166752.48 -2166752.48 -2166237.10 -2166433.84
d378316 -5418619.45 -5418619.45 -5418648.55 -5418648.55

standard approach a significantly larger number of comjautsis
conducted that may introduce rounding errors.

7 DISCUSSION

We have presented the first generally applicable rule seaagen
source implementation for dynamically updating pointershes
that represent per-gene subtrees induced by a comprebensé/
during SPR moves on phylogenomic alignments.

By deploying this rule set we can significantly reduce the
number of floating point operations required to compute the

phylogenetic likelihood function and thereby acceleréelihood-

providing useful comments on this manuscript.

Funding This work is supported by the German Science

Slow NoMesh Foyndation (DFG) under the auspices of the Emmy-Noether

program.
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