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ABSTRACT
Motivation: The current molecular data explosion poses new
challenges for large-scale phylogenomic analyses that can comprise
hundreds or even thousands of genes. A property that characterizes
phylogenomic datasets is that they tend to be gappy, that is, can
contain taxa with (many and disparate) missing genes. In current
phylogenomic analyses this type of alignment gappyness that is
induced by missing data frequently exceeds 90%. We present
and implement a generally applicable mechanism that allows for
reducing memory footprints of likelihood-based (ML or Bayesian)
phylogenomic analyses proportional to the amount of missing data
in the alignment. We also introduce a set of algorithmic rules to
efficiently conduct tree searches via subtree pruning and re-grafting
moves using this mechanism.
Results: On a large phylogenomic DNA dataset with 2,177 taxa,
68 genes, and a gappyness of 90% we achieve a memory footprint
reduction from 9GB down to 1GB, a speedup for optimizing Maximum
Likelihood model parameters of 11, and accelerate the SPR tree
search phase by factor 16. Thus, our approach can be deployed to
improve efficiency for the two most important resources, CPU time
and memory, by up to one order of magnitude.
Availability: Current open-source version of RAxML v7.2.5 available
at http://wwwkramer.in.tum.de/exelixis/software.html.
Contact: stamatak@cs.tum.edu

1 INTRODUCTION
In this article we study the time- and memory-efficient execution of
subtree pruning and re-grafting moves for conducting tree searches
on gappy phylogenomic multi-gene alignments (also known as
super-matrices) under the Maximum Likelihood (ML, Felsenstein
(1981)) model by example of RAxML (Stamatakis, 2006a). While
we use RAxML to prove our concept, the mechanisms presented
here can easily be integrated into all Bayesian and ML-based
programs that conduct tree searches and are hence predominantly
limited by the time and space efficiency of likelihood computations
on trees. Typically, likelihood computations account for 85 to 95%
of overall execution time in Bayesian and ML programs (Stamatakis
& Ott, 2008a; Suchard & Rambaut, 2009; Prataset al., 2009).
Moreover, the space required to hold the probability vectors of the
likelihood model (the ancestral probability vectors that are assigned
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to the inner nodes of the tree) also largely dominates the memory
consumption of likelihood-based programs. While space andtime
requirements can be reduced by using the CAT approximation
of rate heterogeneity (Stamatakis, 2006b) and/or single precision
instead of double precision floating point arithmetics (Berger &
Stamatakis, 2009; Suchard & Rambaut, 2009; Priceet al., 2010),
there exists an urgent need to further improve the computational
efficiency of the likelihood function because of the bio gap,that
is, the fact that molecular data accumulates at a faster pace
than processor architectures are becoming faster (see Figure 1
in Goldman & Yang (2008)).

As Bioinformatics is coming off age and because the community
is facing unprecedented challenges regarding the scalability and
computational efficiency of widely used Bioinformatics functions,
we believe that work on algorithmic engineering aspects will
become increasingly important to ensure the success of the field.

The largest published ML-based phylogenomic study in terms
of CPU hours and memory requirements already required 2.25
million CPU hours and 15GB of main memory on an IBM
BlueGene/L supercomputer (Hejnolet al., 2009). Moreover, we are
receiving an increasing number of reports by RAxML users that
intend to conduct phylogenomic analyses on datasets that require
up to 181GB of main memory under the standardΓ model of
rate heterogeneity (Yang, 1994) and double precision arithmetics.
Memory consumption is therefore becoming a limiting factorfor
phylogenomic analyses, especially at the whole-genome scale.

Initial work by Stamatakis & Ott (2008b) on methods for
efficiently computing the likelihood on phylogenomic alignments
with missing data focused on computing the likelihood and
optimizing branch lengths on a single, fixed tree topology
using pointer meshes. Here, we address the conceptually more
difficult extension of this approach to likelihood model parameter
optimization (for parameters other than branch lengths) and tree
searches which entail dynamically changing trees. We describe
and make available as open source code, a generally applicable
framework to efficiently compute the likelihood on dynamically
changing tree topologies during a SPR-based (Subtree Pruning
Regrafting) tree search. Search algorithms that rely on SPRmoves
represent the most widely used tree search technique in state-of-the-
art programs for phylogenetic inference.

In addition, we implement full ML model parameter optimization
under the proposed mechanism and also take advantage of the
memory footprint reduction potential that was only mentioned
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Fig. 1. A gappy phylogenomic multi-gene alignment with a gappynessof
40% (40% of the data are missing).

as a theoretical possibility by Stamatakis & Ott (2008b) without
providing an actual implementation.

2 UNDERLYING CONCEPT
The underlying idea of our mechanism to accelerate likelihood
computations is that, we do not need to conduct computationsnor
allocate memory for data that is not present in gappy phylogenomic
alignments. Typically, a large fraction (50-90%) of phylogenomic
alignments consists of undetermined characters that are used
to denote the complete absence of sequence data for specific
gene/taxon pairs.

Thus, given two genes,G0 andG1 that comprise a total ofn taxa,
a sequence for both genes will not be available for every taxon; for
some taxa, molecular data will only be available forG0 and for
others only forG1. The missing per-gene sequences for each taxon
are then usually just filled up with undetermined characters. Figure 1
provides an example of such a gappy multi-gene dataset with some
missing sequence data in each gene.

Given the way undetermined characters are modeled in most
current phylogenetic likelihood function implementations, we can
observe that adding a taxon that consists entirely of gaps toa
tree at an arbitrary branch, will not change its likelihood.This
method is used in all popular likelihood-based programs such as
GARLI (Zwickl, 2006), PHYML (Guindon & Gascuel, 2003),
MrBayes (Ronquist & Huelsenbeck, 2003), PhyloBayes (Lartillot
et al., 2007) etc.

If one conducts a partitioned analysis of the multi-gene dataset
as outlined in Figure 1, and one applies a per-partition (per-gene)
estimate of branch lengths, we observe the following: For a given
tree t that comprises all 5 taxa, we may compute the overall
likelihood asLnL = LnL(t|G0)+LnL(t|G1), whereLnL(t|Gi)
is the likelihood of the treet for geneGi restrictedto the taxa for
which sequence data is available in genei. This means that, for
the example dataset in Figure 1, we only need to compute and add
the likelihoods of two 3-taxon trees instead of two 5-taxon trees for
genesG0 andG1 under the standard likelihood implementation.

Restricting the global treet to a per-gene subtree for the available
molecular data therefore allows to save both, a significant amount
of floating point operationsas well asa significant amount of

Virtual Root

Global Tree

SEQ 3 SEQ 1

SEQ 2

SEQ 4 SEQ 5

Reduced Tree for Gene 1

Reduced Tree for Gene 2

Fig. 2. Assignment of the gappy sequences to a tree. Per-gene subtrees are
connected via a distinct set of pointers for each gene.

memory space for storing ancestral probability vectors. The memory
footprint reduction that can be achieved is roughly proportional to
the gappyness of the respective alignment.

While the above idea per se is simple, the key challenge consists
of designing rapid methods to extract the subtrees induced by
genes from the comprehensive treet and to maintain the pointer
meshes that are used to keep track of the per-gene tree topologies
(see Figure 2) in a consistent state. Moreover, conducting tree
searches using, for instance, SPR moves, requires a set of rules to
dynamically update the pointer meshes since an efficient mechanism
to quickly derive whether a specific SPR move induces a change
in an individual per-gene subtree is required. Because of the high
complexity of this approach, a correct implementation of SPR
moves represents an algorithmic as well as a software engineering
challenge.

Our approach is based on three assumptions:Firstly, that
the data is partitioned on a per-gene basis,secondly, that a
separate set of branch lengths is optimized for every partition, and
thirdly, that phylogenomic datasets will remain gappy. While the
first assumption provides a computational argument in favorof
partitioning phylogenomic alignments on a per-gene basis,the third
assumption depends on future developments in wet-lab sequencing
techniques, but it seems likely that the community will be facing
these gappy alignments for at least another 5 years.

3 STATIC MESHES
The usage of static meshes for computing likelihood scores and
optimizing branch lengths has already been described (Stamatakis &
Ott, 2008b). Nonetheless, the concepts introduced by Stamatakis &
Ott (2008b) are required as a prerequisite for developing the update
rules for dynamic meshes.

We will initially outline static meshes by example of the multi-
gene alignment provided in Figure 1. The black regions represent
areas of the alignment for which molecular data is available, i.e.,
there is data for 3 taxa in gene 1 (SEQ 1, SEQ 2, SEQ 3) and for
3 taxa in gene 2 (SEQ 3, SEQ 4, SEQ 5). The shaded gray regions
represent the areas of missing data (undetermined characters). If we
assume that the two genes, Gene 1 and Gene 2, have the same length,
and 2 out of 5 sequences are missing in each gene this alignment has
a gappyness of 40%.
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Fig. 3. Likelihood Vector Organization.

We can now consider an assignment of these gappy sequences to
a fixed tree topology as outlined in Figure 2. Thecomprehensive
tree topology that represents the relationships among all 5taxa for
both genes is represented as a thick black line. In order to compute
the likelihood for this tree one can, for instance, place thevirtual
root into the branch of the comprehensive tree that leads to SEQ
3. In order to account for the missing data and omit unnecessary
computations, one can use a reduced set of branch lengths andnode
pointers that only connects those sequences of Gene 1 and Gene
2 (as outlined by the dotted lines in Figure 2) for which sequence
data is available. This means that, for each gene or partition we
reduce the comprehensive tree topologyt to a per-gene topology,
t|G1 (read ast restricted toG1) andt|G2 by successively removing
all branches that lead to leaves for which there is no sequence
data available in the respective gene. In our example (see also
Figure 3) the log likelihood of the tree can then simply be computed
as LnL = LnL(t|G1) + LnL(t|G2). In addition, the memory
requirements for storing ancestral probability vectors can be reduced
by factor 3 in this example since only one ancestral vector is
required for each partition instead of 3 vectors under the standard
model.

Disregarding slight numerical deviations because of round-off
errors and a distinct ordering of floating point operations (floating
point arithmetics are not associative), the above procedure to
compute the likelihood on gene-induced subtrees theoretically
yields exactly the same likelihood score as the standard method. One
should keep in mind that, numerical deviations in likelihood scores
will increase as more computations are omitted by our approach
because rounding error propagation will become more prevalent.

While the proposed concept is straight-forward, the actual
implementation is significantly more complicated, especially with
respect to an efficient mechanism for computing the topology
reductiont|Gi for a geneGi using the comprehensive topology
t. Tree searches using, for instance, the SPR (Subtree Pruning
Re-grafting) technique to optimize tree topologies, need to be
appropriately adapted to determine on–the–fly which ancestral
probability vectors for which genes need to be updated. Therefore,
a mechanism is required to determine which per-gene subtrees are
changed by a SPR move applied to the comprehensive tree.

3.1 Data-Structure for per-Gene Meshes
To describe the implementation of SPR pointer mesh updates in
RAxML, we initially need to review the memory and data-structure

organization for the single–gene case. The memory space required
by standard likelihood implementations is dominated by thelength
and number of ancestral probability vectors. Thus, the memory
requirements are of orderΘ(n ∗ m) wheren is the number of taxa
and m the number of distinct site patterns in the alignment. An
unrooted phylogenetic tree for an alignment of dimensionsn ∗ m

hasn tips or leaves andn− 2 inner nodes, such thatn− 2 ancestral
vectors of lengthm are required. Note that, the computation of
the vectors at the tips of the tree (leaf-vectors) issignificantly less
expensiveand requires less memory than the computation of inner
vectors (Tzeng, 2006).

In RAxML, only one ancestral probability vector per internal
node, is allocated. This vector is relocated to one of the three
outgoing branches of an internal nodenoderec *next (see data
structure below) of the inner node which points towards the current
virtual root. This concept is also called a view by J. Felsenstein,
because the ancestral likelihood vectors always maintain arooted
view of the tree towards the current position of the root. If the
ancestral probability vector is already located at the correct outgoing
branch (iff. the value ofx == 1) it must not be recomputed. To
move ancestral probability vectors among outgoing branches of an
inner node, a cyclic list of 3 data structures of typenode (one
per outgoing branch struct noderec *back) is used (see
Figure 3) which represents a singleancestralnode of the tree. At
all times, two of the entries forx in the cyclic list representing an
inner node are set tox = 0; whereas the remaining one is set to
x = 1;. The actual probability vector data is then indexed via the
node numbernumber. Finally, the vectorz[NUM_BRANCHES]
contains the branch lengths for every partition that connects the
present node in the cyclic list to the node that is addressed via the
respectiveback pointer.

typedef struct noderec
{
double z[NUM_BRANCHES];
/* branch length arrays */
struct noderec *next;
/* pointer to next structure

in cyclic list
representing one internal node */

struct noderec *back;
/* pointer to neighboring node */
int number;
/* node number, used to access

probability vectors */
char x;
/* probability vector located at

this node? */
}
node;

Using this type of data organization, when the virtual root is
placed into a different part of the tree (for instance, to optimize a
branch or when the tree topology has been altered), a certainnumber
of ancestral vectors must be recomputed.

The above data-structurenode can be extended as indicated
below to accommodate the comprehensive tree topologyt as well as
the per-gene tree topologies as follows: We extend the data structure
by an array of back-pointersbacks that point to the neighboring
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nodes for each per-gene tree. Note that, the address of the back-
pointer of partition 0 for instance might be located furtheraway, that
is, backs[0] == back does not necessarily hold. In addition,
the arrayxs[NUM_BRANCHES] provides analogous information
asx, but for each gene separately. By design, if a certain inner
node represented by a linked cyclic list of 3node structures, does
not form part of a reduced tree for Gene it|Gi, all respective
entries are set to Null and 0 respectively:backs[i] = NULL;,
xs[i] = 0;. If they do form part of the per-gene tree all three
entries ofbacks[i] != NULL; and one of thexs[i] must be
set to 1.

typedef struct noderec
{
struct noderec *backs[NUM_BRANCHES];
/* back pointer array */
char xs[NUM_BRANCHES];
/* probability vector set array */
double z[NUM_BRANCHES];
struct noderec *next;
struct noderec *back;
int number;
char x;

}
node;

3.2 Computing a Traversal on a fixed Tree
To conduct a tree traversal on a fixed tree for optimizing model
parameters and/or branch lengths, we initially place virtual roots
for each gene separately. For each gene, we may just place the
virtual root into the first taxon of the respective partitionfor which
data is available. Given a comprehensive tree topology we then
recursively set up a per-gene pointer mesh by navigating through
the comprehensive tree as described by Stamatakis & Ott (2008b).
The key property of this pointer mesh at any ancestral node isthat,
either all outgoing pointers for a specific partition are settoNULL, or
all outgoing pointers point to another node in the tree that contains
data for the specific gene. That is, a node of the comprehensive tree
either forms part of the per-gene subtree or not.

To compute the likelihood, optimize branch lengths, and model
parameters for the fixed comprehensive tree, we simply need to
execute Felsenstein’s pruning algorithm individually on every gene
by using the respective pointer meshes and branch lengths induced
by *backs[NUM_BRANCHES] and z[NUM_BRANCHES]. The
dotted lines in Figure 2 indicate the reduced tree data structures
given by thebacks[] arrays (the traversal path for a subtree),
while the straight line represents the overall tree topology as
provided by theback pointers. To achieve the desired memory
reduction for ancestral probability vectors (in contrast to the initial
paper (Stamatakis & Ott, 2008b) where this was not implemented),
for each gene we only assign as much memory as is required for
the number of ancestral nodes contained in the gene-tree. Since we
address ancestral vectors via the nodenumber, this means that in
the course of computations, per-gene trees are always represented
by the same nodes in memory, that is, a node that once formed part
of a gene tree will always from part of that gene tree.

The branch length optimization procedure works analogously,
with the only difference thatxs[NUM_BRANCHES] are also
updated, since optimizing the branch lengths of a tree induces

continuously re-rooting the tree at the branch to be optimized. Thus,
one can easily use the above data structure to successively optimize
the branches in every gene tree individually. For a more detailed
description please refer to Stamatakis & Ott (2008b). Finally, it is
important to note that the speedups reported here are smaller than
those reported previously (Stamatakis & Ott, 2008b) because of a
bug in the branch length optimization convergence criterion under
the standard model, that has been fixed in the latest release (v 7.2.5)
of RAxML.

4 DYNAMIC MESHES
Given the prolegomena, we can now introduce the set of rules
for per-gene pointer mesh updates that are required to conduct
SPR moves on the above data structure. For this, we need to
consider the pruning (removing a subtree at a specific branchof the
comprehensivetree) and re-grafting (inserting the pruned subtree
into branches of the tree) steps separately.

4.1 Subtree Pruning
If we prune a subtree from a branch of the comprehensive tree as
shown in Figure 4 we have to consider the following cases.

Case 1:If the subtree to be pruned does not contain any data for
genei, the induced gene-tree will be invariant with respect to any
SPR moves of that subtree and hence the log likelihoodLnL(t|Gi)
will be invariant as well. Therefore, we just need to set a respective
flag for genei and add the current likelihood for partitioni to the
likelihood of the other genes that may change because of the SPR
move. We can check if the subtree does not contain data for genei
by a simple recursive descent for partitioni using the corresponding
pointer mesh in that subtree.

Case 2: If the node to which the subtree is attached in the
comprehensive tree forms part of a genei, i.e., if all backs[i]
are not set toNULL, we store the values of all three outgoing
backs[i] pointers and remove the node from the per-gene pointer
mesh.

Case 3: If the node to which the subtree is attached in the
comprehensive tree does not form part of the gene treeiwe proceed
as follows: Initially, we determine whether data for genei is
contained in the left or right subtree rooted at the branch from
which the subtree is pruned. If neither the left, nor the right subtree
contain data for genei this means that the gene-tree fori is entirely
contained in the subtree to be pruned. Therefore, we once again set
a respective flag for genei that there is no work to do and store the
current likelihood score for this partition. Otherwise, either the left,
or the right subtree, or both subtrees will contain data for partition
i. In the case that both subtrees of the pruning branch as well as
the subtree to be pruned contain data, we connect the nodes inthe
left and right subtrees and prune the subtree. If only one of the two
subtrees defined by the pruning branch contains data, this means
that the subtree to be pruned is directly connected to a node in one
of the two pruning branch subtrees.

In all cases where there is work to do, we always store the nodes
that define the left and the right end of the branch (the pruning
branch) from which the subtree is to be removed. Finally, after
pruning the subtree the branch length of the pruning branch from
which the subtree was removed is optimized via a Newton-Raphson
procedure.
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pruning branch

subtree to be pruned

left subtree right subtree

Fig. 4. Pruning of a subtree.

Once we have pruned the subtree and stored the required data,we
can start re-inserting the pruned subtree into the remainder of the
comprehensive tree.

4.2 Subtree Regrafting
The SPR moves are also initially conducted on the comprehensive
tree data structure. For each insertion branch in the comprehensive
tree into which the candidate subtree shall be inserted, we once
again conduct a case analysis to determine if the specific SPRmove
on the comprehensive tree also induces a change in the gene trees.
For the cases described in Section 4.1 where the pruned subtree
either contains all taxa of a gene or not a single taxon of a gene
i we are done. This is because the SPR move will not induce
any changes toLnL(t|Gi). Thus, in this case, we simply add the
stored likelihood of the gene to the overall likelihood we intend to
compute.

In all other cases the SPR move on the comprehensive treemay
induce changes on the gene tree likelihoods. If we consider the
insertion branch, that is, the branch of the comprehensive tree into
which the subtree shall be inserted we once again need to determine
recursively, if the left or the right subtree of the insertion branch
contain molecular data for a partitioni (see Figure 5).

Case 1: if some nodes in the leftand the right subtree of the
insertion branch contain data for partitioni as outlined in Figure 5,
this means that the two subtrees must be connected by a branch
of the partition, the partition insertion branch, into which the
subtree shall be inserted. We obtain the per-gene insertionbranch by
recovering the two nodes that determine this branch via a recursive
descent into the left and right subtree of the insertion branch in the
comprehensive tree.

However, given that each gene tree contains at most as many
ancestral nodes as the comprehensive tree, it may happen that the
insertion branch for the subtree of partitioni is identical (and hence
the insertion likelihood is identical) for distinct insertion branches in
the comprehensive tree as shown in Figure 6. Thus, the likelihood
that is induced by repeatedly inserting the gene subtreei between
the two nodesA andB that form a branch of the gene tree is identical.
In other words, for the five subtree insertions of the comprehensive
tree between nodesA and B the tree topology induced for the
gene treei is invariant. Thus, the likelihood score for insertions
of subtreei between nodesA andB only needs to be computed
once. To achieve computational savings, we therefore use a simple
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��

left subtree

subtree for gene i

 subtree

comprehensive tree

right subtree

insertion branch for
gene i

insertion branch

Fig. 5. Subtree insertion into a branch, where both the left and right subtrees
contain data for a specific gene i.

connection for gene i

comprehensive tree

subtree insertions
identical likelihood 
scores for gene i

Node A Node B

Fig. 6. Outline of the optimization potential for subtree insertions into
consecutive branches that have identical left and right subtrees for a specific
gene i.

linked list to store and look up the gene tree insertion branch
nodes/likelihood score triplets. For instance, at the firstinsertion of
the subtree between nodesA andB for genei we will look up if the
node pairA, B is stored in the respective list for partitioni. If this
is not the case we will compute the likelihood score and storeit in
the list. For all successive insertions of the per-gene subtree between
nodesA andB the lookup for partitioni will be successful and we
can hence simply re-use the per-gene likelihood score instead of
re-computing it.

Case 2:if only a node to the left or the right of the comprehensive
insertion branch contains data for a partitioni this means that a
subtree for genei is located in one of the two subtrees but not
both. In this case we recursively descend into the subtree that
contains the data until we find the first node that belongs to the gene
treei. If the node is not a leaf, it must be connected to another
node in the same subtree of the comprehensive tree as shown in
Figure 7. As before, we determine whether the candidate subtree has
already been inserted into the respective branch of the genetree by
conducting a lookup in the aforementioned linked list. For example,
in Figure 7 the insertion likelihood for genei is identical when the
subtree is inserted into branchesX, Y, Z of the comprehensive
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Fig. 7. Insertion of a subtree into a branch at which only one of the two
subtrees contains data for gene i.

tree. If this is not the case we insert the candidate subtree,compute
its likelihood and add it to the likelihood scores of the remaining
genes.

Finally, if either the left or the right subtree of the comprehensive
insertion branch only contains a single taxon for genei this taxon
represents the position from which the gene subtree was pruned.
This case is already detected at the pruning stage and an appropriate
flag is set that the likelihood for partitioni will not need to be re-
computed for any subtree insertion.

5 IMPLEMENTATION & EXPERIMENTAL SETUP
The pointer mesh update rules were implemented in the sequential
SSE3-vectorized version (Berger & Stamatakis, 2009) of RAxML
v7.2.5 (freely available athttp://wwwkramer.in.tum.
de/exelixis/software.html; mesh-based methods are
implemented in filemesh.c).

To facilitate verification and comparison of the results, we
implemented a simplified version of the lazy SPR move technique
in RAxML (Stamatakis, 2006a).

The lazy SPR move technique of RAxML works as follows:
Initially, the subtree to be rearranged (the candidate subtree) is
pruned from the comprehensive tree topology. Then, only the
branch from which the subtree was pruned is re-optimized via
a Newton-Raphson procedure, as opposed to re-optimizing all
branch lengths in the remaining tree. After this step, we canstart
inserting the candidate subtree into the branches of the remaining
tree and compute the likelihood score for each insertion. When
lazy SPR moves are used, we only re-optimize the three branch
lengths that are adjacent to the insertion position of the candidate
subtree, instead of re-optimizing all branches of the resulting tree.
Thereby, we only obtain anapproximatelikelihood score instead
of a maximumlikelihood score for each subtree rearrangement,
that is, we conduct a lazy evaluation of SPR moves. Thefast and
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Fig. 8. Lazy SPR move technique of the standard RAxML algorithm.

slow lazy SPR moves implemented in RAxML differ in the way
the three branch lengths adjacent to the subtree insertion position
are optimized. Fast lazy SPR moves use an empirical best guess
for the three branches, while slow lazy SPR moves deploy the
Newton-Raphson procedure. Note that, other widely used ML-
based inference programs like PHYML v3.0 and GARLI also use
variants of lazy SPR moves. The lazy SPR move technique is
outlined in Figure 8.

The simplified version of the lazy SPR move technique
implemented here, reads in a given starting tree, optimizesmodel
parameters and branch lengths, and then applies only one cycle
of lazy SPR moves to the tree with a rearrangement radius that
is fixed to 10. One cycle of SPR moves means that every subtree
of the comprehensive tree will be pruned and re-inserted into all
neighboring branches of the pruning branch up to a distance of 10
nodes away from the original pruning position.

In addition, unlike the standard RAxML search mechanism the
algorithm will not immediately keep SPR-generated topologies that
yield an improvement, that is, it only searches for the best lazy
SPR move on the tree that was provided as input. The algorithm
stores the best move on the comprehensive tree and will then
write to file the comprehensive tree generated by the best SPR
move. For verification purposes, this output tree can then beused
to independently compute likelihood scores on the tree topologies
obtained by the standard method and the fast mesh-based method
we propose here.

The program will also print out the execution time required for
model optimization, the execution time of one SPR cycle, andthe
overall execution time. The lazy SPR searches can be executed using
fast lazy insertion and slow/thorough lazy insertions (Stamatakis,
2006a). The respective command lines are:

./raxmlHPC-SSE3 -f i -C -M -s alignment.phy \
-t startingTree -q partitions -m GTRGAMMA \
-n MESH_FAST
./raxmlHPC-SSE3 -f I -C -M -s alignment.phy \
-t startingTree -q partitions -m GTRGAMMA \
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-n MESH_THOROUGH

for the mesh-based approach and:

./raxmlHPC-SSE3 -f i -M -s alignment.phy \
-t startingTree -q partitions -m GTRGAMMA \
-n NO_MESH_FAST
./raxmlHPC-SSE3 -f I -M -s alignment.phy \
-t startingTree -q partitions -m GTRGAMMA \
-n NO_MESH_THOROUGH

for the standard approach.
The inferences were conducted under the GTR (Tavaré, 1986)

nucleotide substitution model and the WAG (Whelan & Goldman,
2001) amino acid substitution model for protein data. In allcases
we used the standardΓ model of rate heterogeneity (Yang, 1994).

The computational experiments were executed on a single core
of an unloaded SUN x4600 multi-core machine with 32 cores
and 64GB RAM. The program was compiled withgcc v4.3.2
and the standard Makefile for the sequential SSE3 code that is
distributed with the source files.

5.1 Datasets
We used 6 real world DNA and protein datasets containing 59 up
to 37,831 taxa and 6 up to 1,487 genes. The gappyness because of
missing gene data ranged between 27 and 90%. Table 3 indicates
the gappyness of the alignments used (not counting real alignment
gaps). For ease of reference we denote all datasets by dYX where
Y indicates the number of taxa and X the number of genes. Dataset
d94 1487 is a protein alignment (Hejnolet al., 2009), all other
datasets are DNA alignments. All datasets, partition files,and
starting trees, except for the unpublished dataset d378316, are
available for download athttp://wwwkramer.in.tum.de/
exelixis/pointerMeshData.tar.bz2.

6 RESULTS
The recursive lookups to search for gene nodes in the pruning
branch and insertion branch subtrees are implemented naı̈vely, by
recursive descents into subtrees. While this is algorithmically not
very elegant, the efficiency of this procedure is not critical because
a profiling run usinggprof on datasets d598 and d40411 revealed
that the recursive search procedures account for less than 1% of total
execution time. On d378316 the contribution may be higher, but a
profiling run could not be conducted because of excessive run-times
and the significant slowdown associated with profiling.

In Table 1 we indicate the execution time speedups between the
standard implementation and the mesh-based approach for model
parameter optimization (denoted as Model Optimization) aswell as
fast lazy (denoted as Fast SPR) and slow lazy SPR searches (denoted
as Slow SPR). Overall, speedups for the fast lazy SPRs tend tobe
higher than for the thorough lazy SPRs, particularly for protein data.

In Table 2 we provide the overall execution times in seconds
(including file I/O, model optimization, and SPR searches) for the
mesh-based and standard (denoted as NoMesh) likelihood function
implementations using the fast and the more thorough lazy SPR
moves.

In Table 3 we provide the gappyness of each dataset, that
is, the proportion of entirely missing data per gene over the

Table 1. Speedups of mesh-based likelihood approach
versus standard approach.

Dataset Model Optimization Fast SPR Slow SPR

d59 8 1.30 2.04 1.59
d94 1487 5.56 16.69 4.41
d126 34 1.34 1.79 1.80
d404 11 3.05 4.91 3.51
d217768 11.24 16.08 10.26
d378316 3.86 5.36 3.99

Table 2. Total execution times in seconds of mesh-based approach versus
standard approach.

Dataset Fast Mesh Fast NoMesh Slow Mesh Slow NoMesh

d59 8 21 32 74 114
d94 1487 7,493 77,960 92,573 408,794
d128 34 1,106 1,592 2,741 4,523
d404 11 159 597 597 2,066
d217768 7,395 87,320 15,455 164,168
d378316 31,597 130,776 94,497 367,139

Table 3. Gene-sampling induced gappyness and memory
consumption of non-mesh based and mesh-based approach.

Dataset Gappyness Memory NoMesh Memory Mesh

d59 8 27.70% 25 MB 19 MB
d94 1487 81.31% 14.0 GB 2.8 GB
d128 34 28.30% 317 MB 234 MB
d404 11 69.15% 378 MB 125 MB
d217768 89.53% 9.0 GB 1.1 GB
d378316 75.41% 44.0 GB 14.0 GB

entire alignment and the memory footprint for inferences under
GTR+Γ and WAG+Γ for the mesh-based and standard approach.
The memory savings are roughly proportional to the degree of
gappyness.

Finally, in Table 4 we depict the likelihood scores of the trees
computed independently by optimizing the likelihood scoreon
the resulting SPR modified trees obtained by the mesh-based and
standard method. The scores on the trees were optimized using
the mesh-based approach to save time, but for the smaller datasets
we also conducted a tree evaluation using the standard approach.
As already mentioned, likelihood scores may be slightly different
if model parameters are optimized using the standard approach
because of numerical deviations. It is interesting to observe that for
thorough lazy SPR moves, the mesh-based approach yields slightly
better likelihood scores on dataset d217768 and d941487. This
can be attributed to numerical error propagation, because under the
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Table 4. Log likelihoods of final trees generated by mesh and non-mesh
based fast and slow SPR cycles.

Dataset Fast Mesh Fast NoMesh Slow Mesh Slow NoMesh

d59 8 -50439.82 -50439.82 -50434.80 -50434.80
d94 1487 -5996718.37 -5996718.37 -5996650.63 -5996707.99
d128 34 -779459.01 -779459.01 -779446.71 -779446.71
d404 11 -151064.76 -151064.76 -151064.76 -151064.76
d217768 -2166752.48 -2166752.48 -2166237.10 -2166433.84
d378316 -5418619.45 -5418619.45 -5418648.55 -5418648.55

standard approach a significantly larger number of computations is
conducted that may introduce rounding errors.

7 DISCUSSION
We have presented the first generally applicable rule set andan open
source implementation for dynamically updating pointer meshes
that represent per-gene subtrees induced by a comprehensive tree
during SPR moves on phylogenomic alignments.

By deploying this rule set we can significantly reduce the
number of floating point operations required to compute the
phylogenetic likelihood function and thereby accelerate likelihood-
based tree searches by up to one order of magnitude. Perhaps
more importantly, our method also allows for a memory footprint
reduction that is proportional to the gappyness (proportion of
missing data) of the alignment. Large and computationally
challenging phylogenomic analyses under likelihood that would
otherwise require supercomputers can now be conducted on a
desktop computer. More importantly, the methods presentedhere
can be applied toall likelihood-based (ML and Bayesian) programs
for accelerating computations on typical phylogenomic alignments.

While we have demonstrated that we can achieve memory
and time savings of one order of magnitude by deploying our
rule set on datasets with a gappyness of approximately 90%,
the major challenge still lies ahead. Because of the increasing
complexity in phylogenetics software, the main challenge will
consist in supporting all search options of RAxML under all models
(binary, DNA, secondary structure, multi-state, protein)both for
the sequential as well as the parallel Pthreads-based version. In
particular with respect to parallelization we expect novelchallenges
in terms of handling load-balance among threads.
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