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ABSTRACT

Likelihood-based reconstruction of phylogenetic (evo-

lutionary) trees from molecular sequence data exhibits ex-

treme resource requirements because of the high computa-

tional cost of the phylogenetic likelihood function. We pro-

pose a dedicated computer architecture for the inference of

phylogenies under the maximum likelihood criterion. Our

design is sufficiently generic to support any possible input

data type, that is, DNA, RNA secondary structure, or protein

data. Furthermore, the architecture is able to calculate log-

likelihood scores and perform numerical scaling to maintain

numerical stability on large datasets. It can also optimize

the branch lengths of tree topologies and calculate transition

probability matrices. We used FPGA technology to verify

the correctness of our architecture.

1. INTRODUCTION

Phylogenetics is a field in Bioinformatics that deals with the

reconstruction of evolutionary trees from molecular data.

Tree inference programs are characterized by long execu-

tion times due to computationally intensive kernels that are

deployed. In addition, significant advances in wet-lab se-

quencing techniques are generating an unprecedented amount

of molecular data. Hence, phylogenetic inference programs

need to be scaled to handle those new, large, and challenging

datasets.

The Phylogenetic Likelihood Function (PLF) [1] is the

computational kernel that all likelihood-based (Maximum

Likelihood or Bayesian) phylogenetic inference programs

need to execute. Applications such as RAxML [2], Mr-

Bayes [3], or GARLI [4] spend between 85% and 98% of

total execution time in the PLF. Therefore, efforts have been

undertaken to orchestrate the PLF on a large variety of par-

allel architectures, ranging from Field-Programmable Gate

Arrays (FPGA) to the IBM BlueGene/L supercomputer [5].
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Here, we present a dedicated computer architecture for

a PLF co-processor, that is sufficiently generic to compute

likelihood scores on all possible biological data types, that

is, morphological (binary), DNA, RNA secondary structure,

and protein data. RAxML [2], a widely-used program for

phylogenetic inference under Maximum Likelihood (avail-

able as open source code at http://wwwkramer.in.tum.

de/exelixis/software.html), was used as reference im-

plementation for designing the PLF co-processor and to ver-

ify the correctness of our architecture.

A significant improvement over previous designs [6, 7,

8, 9, 10] is, that we accommodate rate heterogeneity. Rate

heterogeneity models accommodate the biological fact that,

different alignments columns/sites in the input alignment

evolve at different speeds. The branch length optimization

process in RAxML is carried out using the Newton-Raphson

procedure (see [11] for a summary). The computationally

challenging part of branch length optimization consists of

calculating the first and second derivative of the likelihood

function. Branch length optimization accounts for approxi-

mately 30% of the total execution time of RAxML. To this

end, a dedicated architectural component has been designed

and integrated into the co-processor for computing the deriva-

tives of the PLF. Moreover, the architecture is also able to

calculate transition probability matrices P (see [5] for de-

tails) for a given branch length b. Finally, a resource-efficient

LAU (Logarithm Approximation Unit [12]) is used to calcu-

late log-likelihood scores and an optimized numerical scal-

ing unit has been integrated to avoid numerical underflow in

the PLF on large trees with many organisms.

The architecture we present here is the third generation

architecture for the PLF on reconfigurable logic. The 1st [9]

and 2nd [10] generation were only able to execute a small

fraction of the PLF routines required for a phylogenetic anal-

ysis with RAxML. This 3rd generation design, now provides

all the functionality that can be offloaded to a co-processor

by a real-world Maximum Likelihood program.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the basic mathematical operations and con-

cepts that are required to implement the PLF. In Section 3



we discuss related work on FPGA implementations for phy-

logenetic inference. In the following Section 4, we present

each of the individual processing units of the co-processor

as well as the overall architecture. Section 5 provides imple-

mentation and verification results. We conclude in Section 6

and address directions of future work.

2. PHYLOGENETIC LIKELIHOOD FUNCTION

In the following, we briefly outline the basic mathematical

operations of the PLF. Figure 1 depicts the operations for

calculating the ancestral probability vector in a tree for DNA

data from the two respective child nodes.

In order to compute the maximum log likelihood value

on a given, fixed, tree topology one needs to optimize the

branch lengths and the parameters of the statistical nucleotide,

or, for instance, protein substitution model. For DNA data,

a model of nucleotide substitution is provided by a 4 × 4
matrix (for protein data by a 20 × 20 matrix) that is usually

denoted as Q matrix. The Q matrix contains the instanta-

neous transition probabilities (for relative evolutionary time

dt) of a nucleotide A to change into a nucleotide A, C, G, or T

etc. To compute nucleotide substitution probabilities given

a branch length t (t essentially represents the evolutionary

time between two nodes in the tree), one has to compute

P (t) = eQt. In typical real world analyses this model is ex-

tended by additional model parameters to accommodate, for

instance, rate heterogeneity among sites. The branch lengths

t i and t j in Figure 1) and all branch lengths in the tree for

that matter, need to be optimized to obtain the maximum

log likelihood value for a given tree and given substitution

model parameters.

To compute the log likelihood of a fixed unrooted tree
topology with given branch lengths and model parameters,
one initially needs to compute the entries for all ancestral
probability vectors which are located at the inner nodes of
the tree. Given, a parent node k and two child nodes i and j,

their probability vectors ~L(i) and ~L(j), the respective branch
lengths leading to the children t i and t j, and the transi-
tion probability matrices P (t i), P (t j), the probability of
observing an A at position c of the ancestral (parent) vector
~L

(k)
A (c) is computed as follows:

~L
(k)
A (c) =

`

T
X

S=A

PAS(t i)~L
(i)
S (c)

´`

T
X
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PAS(t j)~L
(j)
S (c)

´

An abstract representation of the above equation is provided

in Figure 1. An ancestral probability vector entry at a posi-

tion c contains the four probabilities P (A), P (C), P (G),
P (T ) of observing a nucleotide A,C,G, or T at an an-

cestral (internal) node for a column c of the input align-

ment. The probabilities at the tips of the tree —for which

observed data is available— are set to 1.0 for the observed

nucleotide (e.g., for a nucleotide A we set P (A) := 1.0 and
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Fig. 1. The Felsenstein pruning algorithm.

P (C) := 0.0, P (G) := 0.0, P (T ) := 0.0). The probability

vectors at the tips and ancestral nodes have the same number

of columns/sites as the sequences in the input alignment.

For DNA data, every vector entry c contains 4 floating-

point numbers to store the respective probabilities. How-

ever, for the commonly used, more realistic models that in-

corporate the Γ [13] model of rate heterogeneity, 16 or even

32 floating-point numbers need to be stored per vector en-

try c. To compute the integral of the likelihood over the

Γ function at each site, it is discretized into, for instance,

4 discrete rates: r0, ..., r3. For each discrete rate one then

needs to compute the corresponding ancestral probability

vector entries, that is, 4 × 4 (4 discrete Γ rates) or 8 × 4
(8 discrete rates) values for each ancestral probability col-

umn. The entries of the ancestral probability vectors are

computed (filled) bottom-up from the tips towards a virtual

root (see below). This procedure is known as the Felsenstein

pruning algorithm [1].

Under certain standard model restrictions, namely time

reversibility of the substitution model, that is, in essence a

symmetric Q matrix, the log likelihood score will be the

same regardless of the placement of the virtual root. This

means that the virtual root can be placed into an arbitrary

position of an arbitrary branch of the tree to then apply the

Felsenstein pruning algorithm.

An important practical implementation issue is, that the

ancestral probability vector entries need to be scaled in order

to avoid numerical underflow because of very small proba-

bility values. Once all probability vector entries in the tree

have been computed, the log likelihood value can be calcu-

lated by essentially summing up over the ancestral probabil-



ity vector values to the left and right of the virtual root.

3. RELATED WORK

While there exists numerous tools and several methods for

phylogenetic inference, only a few have been mapped to

hardware.

Mak and Lam [6, 7] mapped a reduced floating point

precision PLF of the Jukes-Cantor (JC69 [14]) model of

DNA substitution to FPGAs. The Jukes-Cantor model is

the most simple statistical model of DNA substitution and is

rarely used in present-day biological analyses [15]. All per-

formance tests reported in [6] and [7] have been conducted

on trees with only 4 leaves (4 input sequences) and scalabil-

ity issues are not being addressed.

Davis et al. [16] presented an implementation of the UP-

GMA method (Unweighted Pair Group Method with Arith-

metic Mean) which is a very simple tree reconstruction al-

gorithm and is practically not used for real-world analyses

any more.

In [17, 18], Bakos et al. focused on tree reconstruction

using gene order input data, that is, the order of correspond-

ing genes in the genomes of different organisms is used

to reconstruct trees. Bakos et al. mapped GRAPPA [19],

an open-source implementation for gene order based phy-

logenetic inference onto FPGAs. The main difference to

ML-based phylogenetic inference is that, the kernel func-

tion used in gene order analyses is discrete. In other words,

only few floating point operations need to be performed to

reconstruct a phylogeny.

Kasap and Benkrid [20] presented a FPGA design of

the Maximum Parsimony method for phylogenetic inference

and assessed performance on a FPGA supercomputer. The

implementation is limited to trees with a maximum of 12

organisms, which are very small by todays standards; the

largest published parsimony-based tree has 73,060 taxa [21].

They report speedups between a factor of 5 and up to a fac-

tor of 32,414 for utilizing 1, 2, 4, and 8 nodes (each node

is equipped with a Xilinx Virtex4 FX100 FPGA) on the

Maxwell system compared to a 2.2GHz Intel Centrino Duo

processor. However, the speedups reported are only relative

speedups with respect to the parsimony implementation in

PAUP∗ [22] and not with respect to the fastest-known imple-

mentation of parsimony in the TNT program package used

in [21].

Recently, Zierke and Bakos [8] presented a FPGA accel-

erator for the PLF as deployed for Bayesian MCMC-based

(Markov Chain Monte Carlo) inference methods. The au-

thors mapped the PLF for DNA data as implemented in Mr-

Bayes [3] to their co-processor. Numerical scaling is pro-

vided as well as the calculation of log likelihood scores.

The speed up estimates (based on the largest available Vir-

tex 6 SX FPGA) reported in the paper vary between 2.5X
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Fig. 2. Top-level design of the co-processor’s architecture.

and 8.7X compared to a single state-of-the-art Intel Xeon

5500-series server processor. Note that, Bayesian inference

programs do not require functions for branch length opti-

mization since the MCMC procedure is used to integrate

over branch length distributions. Hence the PLF as used in

Bayesian inference programs is less complex than for ML

programs.

4. THE CO-PROCESSOR ARCHITECTURE

In the following we describe the architecture of our generic,

reconfigurable PLF co-processor. Figure 2 depicts an ab-

stract view of the top-level design. As already mentioned,

RAxML [2] was used as reference for the design of the

architecture. Thus, each processing unit (PRU) represents

a hardware-optimized implementation of a RAxML likeli-

hood function.

The MASTER CONROL FSM is located at the top of

Figure 2. This FSM is vital, because it is the only com-

ponent that can enable or terminate the operation of the co-

processor. The master FSM directly communicates with the

worker FSMs, which are placed below the MASTER CON-

ROL FSM in Figure 2 and coordinate the correct operation of

the PRUs. Each PRU is controlled by one worker FSM. The

worker FSMs control the components (counters and com-

parators) that generate read and write addresses for the mem-

ory blocks of the co-processor memory subsystem. In addi-

tion, each worker FSM generates appropriate control signals

for synchronizing the operation of the respective PRU with

the data-fetch and write-back operations.

The co-processor architecture comprises the following

processing units: NV PRU (calculation of the ancestral prob-

ability vector), MP PRU (calculation of the transition prob-
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ability matrices), EV PRU (calculation of the log-likelihood

score), and BO PRU (calculation of the PLF’s first and sec-

ond derivatives). The NV PRU (Figure 3) executes the vari-

able size (variable sizes are required for different input data

types, see below) matrix-vector multiplication (see Equa-

tion 2) for computing ancestral probability vectors (includ-

ing rate heterogeneity and numerical scaling). In Figure 3,

the left and right child vector entries are denoted as L PVE

and R PVE, while the respective left and right P matrices

are denoted as L TPM and R TPM. The two MULT - AC-

CUM components implement the generic PLF architecture,

that is, an architecture that can compute the likelihood on

morphological, DNA, RNA secondary-structure, and pro-

tein data. The CAT ADD adder and the 4 CAT X MEM

memory components allow for repeatedly using the pipelined

datapath. When a Γ model with 4 discrete rate categories

is used, the datapath is traversed 4 times for each discrete

rate (see Section 1). Finally, the numerical scaling subsys-

tem is depicted at the top right of Figure 3. The compara-

tor and counter components, denoted as SC FP COMP and

SC EV COUNT, count the number of values (values smaller

than a scaling threshold SC THRES) that need to be scaled in

the probability vector entry. Then, the SC EN COMP com-

parator decides whether the entire probability vector entry

should be scaled before the write back operation. The SC U

unit scales all entries by multiplying double precision ma-

chine numbers with a constant that is a power of 2 (imple-

mented by an addition in the exponent field). The final 2to1

multiplexer then selects the scaled or unscaled probability

vector entry according to the signal from the SC EN COMP

comparator.

When the NV PRU has completed the PLF computa-

tions, the EV FSM can trigger the operation of the EV PRU

(Figure 4) which calculates the overall log likelihood score

for the tree at the virtual root. RL PVE and RR PVE are

the probability vectors to the left and the right of the branch

where the virtual root is located. The accumulator calcu-

lates the sum of the likelihoods of the 4 discrete Γ rates.

The x 0.25 multiplier that is connected to the accumulator’s

output bus is required because the Γ model assumes that all

4 discrete rates are equally probable. The LOG unit cal-

culates the log likelihood score of the specific column/site.

Because alignment columns with equal site patterns can be

compressed into a single column, the log likelihood of each

column is multiplied by an integer weight (COL WGT in

Figure 4) that correponds to the number of identical site pat-

terns that have been compressed into a single column. Fi-

nally, the accumulator sums over the per-site log likelihoods

to obtain the overall score for the tree.

The values of the transition probability matrices P , that

is, L TPM and R TPM in Figure 3, are calculated by the

MP PRU (see Figure 5). The dimensions of the P matrices

are not constant since they depend on the data type being

analyzed; their size can vary between 2 × 2 (morphological

data) to 20 × 20 (protein data).

Finally, the BO PRU (Figure 6) is used to compute the
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first and second derivative of the likelihood function. The

derivatives are required for the Newton-Raphson procedure

that optimizes branch lengths.

5. SYSTEM IMPLEMENTATION & EVALUATION

To verify the functionality of the PLF co-processor archi-

tecture, we implemented it in VHDL and mapped it onto a

Xilinx Virtex 5 SX95T-1 FPGA. We used Modelsim 6.3f by

Mentor Graphics as simulation tool and conducted extensive

post place and route simulations for each processing unit.

For testing, we executed RAxML on real-world datasets and

created testbenches for the FPGA implementation by storing

the input arguments for the functions implemented in the co-

processor. Then, we compared the results calculated by the

co-processor with those of the corresponding RAxML func-

tions.

The majority of floating-point operations is executed on

the FPGA by components that have been generated using

the Xilinx Floating-Point Operator (Xilinx Floating Point

Operator v4.0, http://www.xilinx.com/support/ip_

documentation/floating_point_ds335, accessed July

2009). However, the accumulator and exponential operators

have been generated using FloPoCo [23]. For computing

logarithms, we used the Logarithmic Approximation Unit

(LAU [12]).

Table 1 provides resource usage and performance data

for each PRU as well as for a light-weight system instantia-

tion that contains only one PRU of each type. As shown by

Table 1, the entire co-processor design occupies only a frac-

tion of the available reconfigurable resources on the chip.

We did not attempt to exploit the full HW capacity of the

FPGA, since our objective is to present and verify a general

computer architecture for the PLF.

The performance of this generic co-processor architec-

ture that can operate on all types of biological input data

is affected by two factors. Firstly, the use of reconfigurable

—flexible— hardware and secondly, the design of a generic,

flexible, but nonetheless static design on programmable hard-

ware. Our vision was to create a prototype design for an

ASIC, thus a static architecture that can handle all types of

biological data is required. To this end, the current FPGA

implementation of the co-processor is between 2.8 and 4.5

times slower than the highly optimized SSE3-vectorized PLF

RAxML implementation on an Intel processor running at 2.4

GHz. However, a dedicated, optimized accelerator-oriented

version of our co-processor that only accomodates DNA data

showed a speed-up of factor 6X on a Xilinx Virtex 5 SX240T.

To allow for reproducing our results the VHDL source code

of the co-processor is available at http://wwwkramer.

in.tum.de/exelixis/genericPLF_FPGA.tar.bz2.

A question that may arise is why runtime reconfiguration

is not deployed to improve performance. An initial assess-

ment indicates that, because of the high frequency of recon-

figurations required to make available optimized, data-type

specific PRUs on the co-processor, execution times will be

largely dominated by reconfiguration times.

For instance, RAxML requires 6,743 seconds to com-

plete a tree search on a real-world dataset comprising 714

sequences (organisms) with a length of 1,231 nucleotides

each. The total number of PLF function invocations that will

be offloaded to the co-processor during the complete tree

search amounts to 61,092,096, which corresponds to 9,060

reconfigurations per second. We used the Partial Recon-

figuration Cost Calculator (PRCC, http://users.isc.

tuc.gr/˜kpapadimitriou/prcc.html, accessed Octo-

ber 2010) to estimate the reconfiguration time for the en-

tire chip (based on the framework presented in [24]), as-

suming an average-size FPGA like the Virtex5 FX200T and

a PowerPC as reconfiguration controller. The PRCC tool

calculated a reconfiguration time of 576 milliseconds which

means that 9,060 reconfigurations (the number of reconfig-

urations that would be required per second) will require ap-

proximately 5,218 seconds.

Thus, given the current state of technology, a system

supporting runtime reconfiguration will not be able to out-

perform the static generic design we presented here. There-

fore, our generic design can either serve as a prototype ar-

chitecture for building an ASIC or for deriving accelerator-

like FPGA implementations that are optimized for comput-

ing the PLF on specific data types, for instance, a dedicated

design for DNA data. Alternatively, one could also think of

a system comprising several FPGAs that operate in paral-

lel and provide dedicated, optimized PRUs for specific data

types.

6. CONCLUSION & FUTUREWORK

We presented a comprehensive and versatile design of a phy-

logenetic co-processor for ML-based inference of evolution-

ary trees. The architecture consists of hardware-optimized

processing units, that have the same functionality as the cor-

responding highly optimized likelihood functions in RAxML.

Thus, the co-processor, unlike previous designs, can be used

for conducting real-world phylogenetic analysis. We used

reconfigurable logic to verify functionality and correctness

of the co-processor. We find that, present FPGA floating-

point components are not capable of accomodating a highly

generic implementation of the PLF. Thus, the present work
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Resources-Performance NV PRU MP PRU EV PRU BO PRU SYSTEM

Number of Slice Registers (58,880) 6,147 4,951 5,885 5,110 22,077

Number of Slice LUTs (58,880) 4,271 6,629 4,841 14,040 31,354

Occupied Slices 1,850 2,163 2,087 3,829 10,780

Number of BlockRAM/FIFO(36k) 0 7 3 3 21

Number of BlockRAM/FIFO(18k) 0 0 1 0 1

Number of DSPs 43 68 39 108 258

Maximum Frequency(MHz) 211 104 223 59 61

Table 1. Resource usage and performance report of the co-processor’s processing units on a Virtex 5 SX95T FPGA.

can be regarded as proof-of-concept architecture for a poten-

tial ASIC or as starting point for building optimized FPGA

accelerators for the PLF targeting specific input data types

(e.g., DNA or protein data). Future work will address the

deployment of FPGAs for such derived data-specific PLF

accelerators based as well as the usage of alternative accel-

erators architectures (e.g., GPUs).
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