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Abstract—Recent advances in molecular sequencing tech-
nology have given rise to novel algorithms for simultaneouyg
aligning short sequence reads to reference sequence aligants
and corresponding evolutionary reference trees. We preséra
complete hardware/software implementation for the accela-
tion of a program called PaPaRa, a newly introduced dynamic
programming algorithm for this purpose.

We verify the correctness of the proposed architecture on
a real FPGA and introduce a straight-forward communication
protocol (using gigabit ethernet) for seamless integratin with
the encapsulating steering software that is executed on a
PC processor. The hardware descriptionand the software
implementation are freely available for download.

When mapped to a Virtex 6 FPGA, our reconfigurable ar-
chitecture can compute 133.4 billion cell updates per secdrfor
the novel, tree-based alignment kernel of PaPaRa. Compared
to PaPaRa, running on a 3.2GHz Intel Core i5 CPU, we obtain
speedups for the alignment kernel, that range between 170 dn
471. For the entire application, that is, the alignment kerrel
and the trace-back step, we obtain speedups between 74 and
118.

Keywords-FPGA, dynamic programming, multiple align-
ment, phylogenetic inference

I. INTRODUCTION

reads to a fixed reference alignment that also uses the in-
formation contained in the respective evolutionary refese
tree. Although short reads can be aligned with respect to a
reference alignment using the HMMALIGN tool (part of the
HMMER [5] tool suite), PaPaRa outperforms HMMER in
the context of phylogenetic short read placement, because
the tree structure (phylogeny) is also incorporated by Pa-
PaRa [2] for the alignment process. Like most alignment
methods, PaPaRa is based on a dynamic-programming al-
gorithm. The underlying principle is similar to the Smith-
Waterman algorithm [6], with affine gap penalties [7]. How-
ever, the specific alignment kernel in PaPaRa is used to
align a sequence (a short read) against an ancestral state
vector that is derived from varying positions (branches) in
the phylogenetic reference tree.To this end, comparedeto th
Smith-Waterman algorithm, PaPaRa implements a unique
alignment kernel and scoring scheme. Moreover, the PaPaRa
alignment kernel is 'one-sided’, that is, gaps can only be
inserted into the query sequence amat into the reference
alignment.

The source code of PaPaRa is available as part of
RAxXML [8] (http://wwwkramer.in.tum.de/exelixis/papara

Significant advances in molecular wet-lab sequencindar.gz), a popular likelihood-based phylogenetic infeeen

techniques, that is, methods for determining the order oprogram. Profiling of the PaPaRa source code revealed
nucleotides in a DNA molecule, have led to a tremendoushat the scoring function (the alignment kernel) accounts
biological data flood in recent years. The temort for 98% to 99.5% of overall execution time. To date,
read refers to DNA sequence data that are produced byeconfigurable devices have already successfully been de-
a new-generation sequencer. Current state-of-the-ad- pyr ployed to accelerate Bioinformatics applications inchgdi
sequencing technologies can generate between 100,000 phylogenetic inference kernels [9] and a plethora of pair-
1,000,000 short reads. The read lengths typically vary bewise sequence alignment algorithms [10]. Since PaPaRa uses
tween 30 and 450 nucleotides. To allow for an efficient andphylogenetic inference and alignment kernels we explore
accurate phylogenetic analysis of such short read sampleBPGA technology to accelerate the code.
novel maximum likelihood-based methods [1] have recently The FPGA-based system we introduce here is able to
been introduced ([2], [3], [4]). These approaches, known aseduce the execution time of the PaPaRa kernel by up to
phylogenetic placement algorithms, assign the short readé48 times compared to executing PaPaRa on an Intel Core i5
to a fixed, given reference phylogeny, that is, an unrootedPU running at 3.2GHz. The underlying system architecture
phylogenetic (evolutionary) tree which is based on a giverof our design is to offload the scoring function (align-
multiple sequence reference alignment. Before applyireg onment kernel) calculations to dedicated hardware compsnent
of the above phylogenetic placement algorithms, all shor{henceforth denoted as: Score Processing Units, SPUs) on
reads must be aligned to the reference alignment. the FPGA. The software implementation on the PC side
Here, we present a FPGA-based system for the accels used to orchestrate computations, collect the scorabs, an
eration of PaPaRa [2] (PArsimony-based Phylogeny-Awarg@erform the final trace-back step of the alignment algorithm
short Read Alignment), a novel method for aligning shortTo allow for reproduction of all results in this paper the
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software implementation and the hardware description of

the FPGA design are available as open-source code at: 2818 9 }J sLeels
http://wwwkramer.in.tum.de/exelixis/FPGpapara.tar.gz. a(G)j6 6061001011
The remainder of the paper is organized as follows: (1) 00600011008
Section Il describes the PaPaRa algorithm. In Section llI, 0 0.0 00
we review related work on FPGA-based accelerators for os g g\gga
standard alignment algorithms. The reconfigurable archite 353002 34
ture of the Score Processing Unit (SPU) is described in 6833234
Section IV while Section V provides a detailed descrip- . . _AC-ATG

tion of the verification process and the design of a fully aligned QS
functional FPGA-based system. In Section VI we provide

performance results for our FPGA accelerator. We conclud&i9ure 1. Example of a dyamic-programming matrix for alfgnia QS
against an ancestral state vector. The positions for wiiehQS characters

in Section VII. match the bits in the ancestral state vector are highlighted
Il. THE PAPARA ALGORITHM

The algorithm aligns short reads, henceforth denoted asemoving again) an additional node ('virtual root’) intocka
query sequences (QS), against ancestral state vectovedieri edge of the RT. The ancestral state vector is then calculated
from the reference multiple sequence alignment (RA) andor each virtual root (each edge of the RT) by combining
the corresponding phylogenetic reference tree (RT) that hathe ancestral states of the left and right internal nodes tha
been inferred using the RA. In a phylogenetic tree, knownare attached to the branch under consideration. In addition
sequences (e.g., nucleotide or amino-acid sequence dat@) the ancestral state vectors, PaPaRa computes and uses
of living species (taxa) are assigned to the leaves (tipsan additional, dedicated signal which provides infornatio
of the tree. The internal nodes correspond to hypotheticadbout the distribution of gaps in the RT. This signal cossist
common ancestors of the subtrees they define. Because thé a supplementary flag (CGAP) for each sitewhich
real sequences at the ancestral nodes are not known, differds used to appropriately adapt the scoring function of the
methods for representing the inherent uncertainty of anceslynamic programming implementation. The CGAP signal is
tral states (ancestral sequences) have been introduced d¢alculated along with the ancestral state vectors, acogrdi
the context of functions for scoring alternative phylogéme to the rules described in [2].
trees (different evolutionary hypotheses). The alignment scoring function is provided in equation 1.

The maximum parsimony (MP) method is a widely usedThe equation recursively defines the score of the dynamic-
optimality criterion for phylogenetic inference. Given a programming matrix cellD*/ in columni and row; for
fixed multiple sequence alignment, the idea is to find thealigning site A’ of the ancestral state vector against g&é
phylogenetic tree which explains the alignment by the leasin the QS.
number of mutations. For nucleotide sequences (DNA/RNA)
the alphabet contains four characters: A (Adenine), C (Cy-
tosine), G (Gouanine), and T (Thymine). The computation

{ if CGAP is set for sited
and representation of ancestral state vectors under pamgim {
m

; 10

ca 0 otherwise
; i 2,1) fCGi=0
is described in [11]. The key point is that for DNA data,  (GFor,GPp) = 207 0; otherwise
0

every edge (branch) in the RT can be represented by ¢t AtandBimatch
if A*a

a parsimony state vectod, = A}, .., Ay, where each §hi = .

S f . . 3 otherwise
individual A; represents the parsimony state of alignment o _
site ¢ (i.e., columni) of the RA. The individual entries Dl = m{ Dlzllijj—‘r GPhp
in the parsimony state vector consist of bit vectatis = Dy " +GPg

ai(A),ai(C),di(G),ai(T) e [0,1]", where the individual
bits in a} correspond to the four DNA characters. This is
a key difference to the simpler case of pair-wise sequence
alignment, where both input sequences can only have one For instance, an ancestral staté at site: with A’ =
character per site. Here, every site A3 can be either an [1100] means that, As and Cs in the QS under consideration
A, C, G, or T, or any possible combinations thereof (i.e.,can be matched against alignment sit®f the ancestral
an ancestral site can be an A or a T), to reflect the inhererdtate without incurring a mismatch penalty. Thus, for sogri
uncertainty of ancestral sequence states. mismatches via the respective functisf¥, the default mis-

In PaPaRa all QS are aligned against all ancestral statmatch penalty o8 will be used, unless the bit corresponding
vectors for all edges of the RT. The ancestral state vector® the character at positionin the QS is set ind?. When
are obtained by successively (one at a time) inserting (anthis matching condition is met, the score returned%y is

Dbi
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0. The special way in which match and mismatch penalties. | rdaddr | OUT
are treated along with the phylogeny-aware adaptive sgoriniN ! ! 11BUS
scheme (G?) in PaPaRa represent a key difference toBYS M_FSM \ R_FSM  [yiraddr
standard dynamic programming alignment methods. Further- hand-shaking wren REF RES
more, alignments are one-sided, which means that gaps can <77 signals FIFO | | FIFO
only be inserted into the QS. Figure 1 depicts an example rdadar | BYF BUF
of the dynamic programming matrix. The Figure shows the QFSM PR_FSM
bit-vector representation of an ancestral state vectortlaad ref"uw
. wraddr rdaddr

positions where the QS characters match the ancestral state | ., query[ ] scores
For the sake of simplicity, the additional CGAP signal is not nucls|[ |
shown in the example. a SCORING | FINAL

The PaPaRa algorithm consists of two phases. Initially, all L] Q_MEM ol cew - | SCORE
QS are aligned against all ancestral state vectors in the RT. | ARRAY . | DETECT
For each QS only the best alignment score is retained. Thus, — UNIT
given an RT withr taxa, m sites, andg QS, the program ]

needs to execut®(rq) alignment steps o (rgm?) opera-
tions. During the initial phase, the actual alignments axe n  Figure 2. Top-level block diagram of the Scoring Processimf.
generated (i.e., the 'traceback’ step is not performed) for

performance reasons. During the second phase (given the

best scores for all QS), the actual alignments are generatd@r operations on x86 CPUs [16], and GPUs (e.g., using
by aligning each QS again, but only against the respectiv€UDA [17]) exist. However, because the PaPaRa align-
ancestral state vector that produced the best score forghe @nent kernel differs significantly from the standard Smith-
during the alignment step. As already mentioned, the initia\Waterman implementation, we omit a more detailed review
(all QS against all ancestral probability vector) alignnsen at this point. There also exists related work on accelegatin

account for more than 98% of overall runtime. Thus, thisthe (more complex) dynamic programming kernel of HM-
initial alignment phase represents the natural candidate f MER [5]. For an overview of FPGA accelerator architectures

a FPGA-based acceleration. for the Virterbi algorithm used in HMMER, please refer
to [18]. Performance results vary between 0.7 and 20 million
I11. RELATED WORK CUPS.

FPGAs have already successfully been used to accelerateNote that, PaPaRa is currently the only dedicated algo-
DNA and protein alignment methods that rely on dynamicrithm for aligning QS against a multiple sequence alignment
programming algorithms (e.g., the Smith-Waterman [6] algo and a corresponding phylogenetic reference tree. Existing
rithm). While there already exists a comprehensive bibliog alternative algorithms that could be used in this context
raphy dealing with this general and important topic, we areare based on aligning QS against a flat (non-phylogenetic)
not aware of any recent papers that specifically focus on thgrofile that is derived from the multiple sequence alignment
acceleration of short read alignment against fixed referencwithout taking the phylogenetic tree into account. Exigtin
alignments. tools which can be used for sequence/profile alignment are

In [12], Li et al. presented a FPGA-based accelerationHMMAlign [5], MUSCLE [19], and MAFFT [20].
of the Smith-Waterman algorithm. They obtained a speedup In addition to implementing this novel algorithm, our
of 160 compared to a C software implementation runninghardware implementation is also unique because we deploy
on the same FPGA (Altera Stratix EP1S40 FPGA) on arthe UDP-IP protocol over standard gigabit ethernet for PC-
Altera Nios Il soft processor. The reconfigurable hardwaré=PGA communication [21]. This allows for a seamless
part designed to accelerate dynamic programming matriyntegration of the FPGA accelerator for the alignment kerne
cell updates had a maximum operating clock frequency oWith the PaPaRa algorithm running on a standard Linux
3.1 MHz and a peak performance of 24.5 million CUPSPC. Related FPGA implementations of the Smith Waterman
(dynamic programming cell updates per second). algorithm used FPGA boards that were connected to the PC

Yu et al. [13] presented an architecture for the Smith-via the PCI bus [22] or directly via the CPU bus [23].
Waterman algorithm based on a systolic cell array. Due to
the efficiency of their design, they managed to instantiate IV. THE SPU ARCHITECTURE
4032 processing elements on a Xilinx XCV1000E-6 FPGA. In the following we present the reconfigurable architecture
Operating at a clock frequency of 202 MHz, their systemof the Score Processing Unit (SPU). Figure 2 depicts the
achieved a performance of 814 billion CUPS. block diagram of the top-level design.

Several alternative implementations for accelerating the The entire control of the SPU is orchestrated by 4 finite
Smith-Waterman algorithm using FPGAs ([14], [15]), vec- state machines (FSMs) that are located in the top left corner
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the output of theSC that corresponds to the last line of
the matrix and also determines the minimum value in that
last line. When the entire matrix has been calculated, the
FINAL_SCOREDET_UN unit then writes the minimum
Figure 3. The scoring cellSQ architecture. value to theRES FIFO_BUF output fifo buffer.
To accommodate scoring requests for query sequences
whose length exceeds the fixed numbeiS@savailable in
of Figure 2. The FSMs operate in a master-worker schemehe SPy we also integrated a loop control module. Figure 4
the master FSMN_FSM initiates and synchronizes the provides an abstract representation of this subsystenedBas
operation of the three worker FSMQ(FSM, R_FSMand,  on the current position (index) of the nucleotides in thergue
PR_FSM). sequence that are provided as input at each clock cycle, the
The Q_FSM is triggered when a QS is received. The Loop Control module either feeds the output of the |&E
main purpose of th@_FSMis to generate the write-enable (100th in the present implementation) or a constant value
signal as well as the correct write addresses foIQhMIEM o the input ports of the firsSC The constant values is
memory with a capacity of 200x16 bits. In each of the 16set to zero and can be regarded as the row of the dynamic
memory lines, a total of 100 QS nucleotides are stored. Thgrogramming matrix at position -1. This constant zero value
Q_MEM memory is used to store a single, incoming QSessentially represents the dynamic programming matrix row
until an ancestral reference state vector (RS) arrivesnajai that immediately precedes the next row to be calculated.
which the QS shall be aligned. When the QS is stored in The SC unit (Figure 3) calculates Equation 1 (See Sec-
memory, theQ_FSM sends a signals to thd_FSMwhich  tjon 11). Initially, the B, value, which represents a 2-hit
then switches to reference-awaiting state. coding of a nucleotide in the QS, is transformed into the
Similar to the Q_FSM the R_ FSM is responsible for corresponding 4-bit representation by tNe&JC_DEC_UN
storing the RS in the RS FIFO buffeREF_FIFO_BUF).  unit. Then, theQ_R_CMP_UN unit performs a comparison
The main difference between tie FSM and theQ_FSM  between the QS nucleotide and the current RS position.
is that, once, the first position of the RS FIFO buffer hasBased on the result of this comparisamdthe CGAP signal,
been filled, that is, the first statelf) for the first site of the the 4tol multiplexer selects one out of the four possible
RS has arrived, th® FSMimmediately notifies the master values for the intermediat®*—17-1 + 8%/ + CG? value.
FSM. The four possible values are either one of the three corsstant
The M_FSM interprets the notification from thR_FSM  values for a mismatch (MisM, 3), a match with a CGAP
as a signal to start the actual computations and thereforgMaCG, 10), or a mismatch with a CGAP (MisM+MaCG,
triggers the processing FSNPR_ FSM). ThePR_FSMgen-  13), or the valueD*~17—! which is the output of a neigh-
erates read addresses for QeMEM andREF_FIFO_BUF boring SC.
memories as well as all the required signals for the opera- The three parallel components denoted/MH in Figure 3
tion of the SCORINGCELL _ARRAYwhich represents the are used to select the minimum value among the input
computational kernel of th&PU signals (see Equation 1 in Section II). In fact, only tidN
The SCORINGCELL_ARRAY consists of 100 scoring comparison components would be required. The reason for
cells (SC9 that operate in parallel. Figure 3 illustrates using an additionallIN module is for shortening the critical
the architecture of the&sC The output ports of eacl$C path and thereby obtain a higher operating clock frequency.
are connected to a neighborirC as well as to theFl- At the same time, the latency of the computational part of
NAL_SCOREDET_UN unit (see Figure 2) which selects the SC still amounts to only 1 clock cycle.
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Finally, the VAR LEN_SHFT_REG components are vari- HOST PC
able length ram-based shift registers that increase tbedspt SPU
of the SCsrelative to the QS length. Since th8COR- PaPaRa |~ Lé%';’:zp :
ING_CELL_ARRAY comprises 100SCs scoring requests SPU
with a QS length of less than 100 nucleotides do not query and reference—
require additional latency because the processing army ca o ~—— scores FPGA
operate on a different site during every clock cycle. For Figure 5. The FPGA-based acceleration system.

instance, when a matrix for a QS length of 350 nucleotides is
computed, th& AR LEN_SHFT REGregisters will increase
the latency to 4 clock cycles. The cell values are tempgraril A special sequence of packets needs to be transmitted
buffered in the pipeline stages of ti&Csuntil the SCOR-  such that, the PaPaRa software (on the PC) can trigger SPU
ING_CELL_ARRAYfinishes the operations at some giend  operations. An alignment request requires the transnmissio
is able to proceed to site+ 1. During the 4 clock cycles, of a Q PACK that is, an ethernet packet that contains
the QS is provided as input to ti&Carray in blocks of 100 the query sequence, followed by & PACK which con-
nucleotides per cycle. For 350 nucleotides, the lasB88 tains the reference sequence against which the QS shall
of the array will receive undefined input data in every 4thbe aligned. EveryX packets, whereX is the size of the
clock cycle and the respective outputs will be ignored byRES FIFO_BUF, a TB_PACK packet (stands for Transmit
the FINAL_SCOREDETECT UNIT. Back) is transmitted. ThéelB_PACK packet indicates to
the SPU that the software is ready to receive the results
V. IMPLEMENTATION, VERIFICATION & DESIGN OF from the previous alignment requests that are stored in
ACCELERATORSYSTEM RES FIFO_BUF. Figure 6 illustrates the supported packet
We initially described the implementation and verifica- formats.
tion of the SPU architecture (Section V-A). Thereafter, we To further optimize the communication process, we con-
describe the PC-FPGA accelerator system as well as thilgured the FPGA to transmit and receive JUMBO frames
communication protocol between the FPGA board and théi.e., IP packets that are longer than the standard minimum
host PC (Subsection V-B). length of 1500 bytes). This allowed us to transmit only a
o , single ethernet packet for each alignment request. Thus, a
A. Verification of the SPU Architecture common alignment request now requires the transmission
The SPU architecture was implemented in VHDL andof a new packet type, th®R PACK Here, theQ_PACK
initially mapped on a Virtex 5 SX95T-2 FPGA. Extensive format can be concatenated with tRePACK into the same
post place and route simulations were conducted in orddarge UDP packet. Also, a modified transmit back request
to verify the functionality and correctness of the proposedlB_QR _PACK asking for the results of a previous alignment
architecture. As simulation tool, we used Modelsim 6.3frequest, can be inserted at the beginning of the common
by Mentor Graphics. We used the PaPaRa source code aignment requesQR _PACK format to replace the stand-
generate appropriate testbenches for real-world biokbgic alone TB_PACK packet.
datasets. Each packet format starts with a unique command code. In
Thereafter, the HTG-V5-PCIE development board withthe query and reference packets, the command code occupies
the same Virtex 5 SX95T FPGA was used for testing ond bytes while in the transmit back packet it occupies 2 bytes.
the actual chip. The main objective of these tests was ttn addition, theQ_PACK contains one byte with zeros which
verify the correctness of the SPU architecture. We used ais ignored by the SPU, a selection code which is used by the
advanced verification tool (the Chipscope Pro Analyzer) toFINAL_SCOREDETECT UNIT to multiplex the results of

monitor the input and output ports of the SPU. the 100 parallelSCs a load code which is used to control
the variable length shift registers of tIf®Cs and, finally,
B. FPGA-based Accelerator System the query sequence. Accordingly, tiRe PACK contains a

After successful verification of the SPU architecture (post2-byte field that contains the reference sequence length and
place and route simulatiorend tests on an actual FPGA) thereafter the raw reference sequence data. Finally, in the
we integrated a simplified communication protocol betweenTB_PACK format, the 2-byte TB command is followed by
the FPGA board (HTG-V5-PCIE) and the host PC. For thisanother 2-byte field that contains the total number of result
purpose, a Dell Latitude E4300 series laptop with an Intethat shall be transmitted back. The number of results can
Core2 Duo P9400 processor (2.4GHz, Ubuntu) was usedot exceed the size of tHRES FIFO_BUF memory.

The communication between the FPGA board and the PC We created an experimental extension of the PaPaRa
was established over Gigabit Ethernet using a dedicategdrogram on the PC side. The original code is used for
UDP/IP core for direct PC-FPGA communication [21]. reading input files, encoding QS and RS into the appropriate
Figure 5 illustrates the complete system. format, sending SPU-compliant UDP packets to the FPGA,



Q_PACK R_PACK TB_PACK 1 SPU| 12 SPUs| 1 SPU SYS
Format Format Format Resources V6 V6 V5
| Qemd_1 | | Remd 1 | | TBcmd_1 Slice Regs 7,725 | 92,248 8,366
| Qcmd_2 | | Remd_2 | | TBemd_2 Slice LUTs 29,026 | 347,344 29,103
| Qecmd_3 | | Remd_3 | | res_num_1 Occup. Slices | 7,791 | 88,036 9,059
| Qcmd 4 | | Remd_4 | res_num_2 BlockRAMs (36Kk) 5 60 5
zeros length_. BlockRAMs (18k) 5 60 10
|_select | | length 2 | TB_QR_PACK TEMACs - - 1
load reference Format
| query | TB_PACK Table |
Fo--=o------ OCCUPIED RESOURCES ON TH¥5SX95TAND V6HX565T DEVICES.
: | Q_PACK
| o | R_PACK
Cbyte of the scores by the SPU. According to the error report that
length . . .
was generated by the software during the final alignment
Figure 6. Basic packet formats. phase, the fraction of incorrect scores due to over-clagkin
the prototype system ranged between 10% and 20% of
overall SPU score requests.
receiving the result packets from the FPGA, performing the VI. RESULTS

trace—bac;k SteP' and generating the actual QS, alignments fo Here we present a performance assessment for our accel-
the best insertion edges. The program extension was creatgthor architecture when multiple SPUs are instantiatea on
in C++ using the boost library (www.boost.org) for sending|5ge virtex 6 FPGA. All results presented in the current
and receiving UDP packets. Section refer to Xilinx reports after the implementation
The fast response time of the FPGA led to a diﬁicultprocess (post place and route).
technical challenge for the PC application when synchrenou  Taple | provides resource usage reports for three hardware
communication is used. After the jumbo UDP packet con-configurations. The first column of Table | provides the
taining the QS and RS has been sent (BRCK) to the  resources occupied by a single SPU instance on a Virtex 6
FPGA, the FPGA will send back the resulting scores withinHx565T-2 FPGA (_SPU_V6). According to the PAR static
a very short amount of time (only 6 cycles after the end-timing report, the maximum operating frequency for this
of-frame signal of the UDP packet is set). Because programinit is 140.92 MHz. The 125PU V6 architecture comprises
execution on the PC side is blocked until the whole UDP12 independent SPU instances with a maximum operating
packet has been sent via a system call, the answering packeéquency of 111.17 MHz. Finally, the_ SPU_V5_SYSim-
may already have been sent by the FPGA, before the Pglementation, which was described in the previous Section,
can actually start receiving it which again requires a sgste contains 1 SPU instance, a TEMAC, and a UDP/IP core.
call. Incoming UDP packets are generally not buffered, if no  For performance comparison we executed the software-
corresponding receive operation has been initiated, #)at ionly implementation of PaPaRa on an Intel core i5 750
the packets returned by the FPGA can be lost. Therefore, wgPU running at 3.2 GHz. Initially, we measured the total
deploy an asynchronous communication mechanism, whicBxecution time for the scoring phase (aligning all QS adains
relies on a dedicated thread that initiates a receive dperat all ancestral States) required by the PaPaRa imp|eme|mtati0
beforethe QS and RS are sent to the FPGA. We used thor 4 real-world biological datasets. The PaPaRa software
asynchronous 10 operations as provided by the boost librargontains a special algorithmic optimization (the so called
to implement this functionality. ‘early stopping criterion’), which decreases the total tiem
Note that, the PAR (Place and Route) static timing reporbf matrix cells that need to be calculated. This trick img®v
revealed that the maximum operating clock frequency of athe runtime of the PaPaRa software by a factor of 2—
SPU on a Virtex 5 SX95T FPGA is 101.52 MHz. In order to 3 [2]. The current FPGA design does not implement this
avoid additional synchronization problems with the softeva optimization, since this would require a non-trivial resam
and, at the same time, be able to verify the functionalityof the pipeline datapath for calculating the matrix enteied
of the proposed communication protocol, the same cloclof the communication protocol.
signal of 125 MHz was used both, for the communication Nonetheless, to conduct a fair comparison, we present
components on the FPGA, and the SPU. By communicatioperformance data for the standard software implementation
components, we refer to the TEMAC (Tri-Mode Ethernetas well as for the optimized software implementation with
Media Access Controllerand the UDP/IP core. This SPU the early stopping criterion. For a given dataset, the stathd
over-clocking caused the incorrect computation of a foacti  software implementation performs exactly the same number



Alignment kernel Trace | Kernel Speed Up VS Application Speed Up VS
Dataset | PC (base) PC (opt)| FPGA | back | PC (base) PC (opt)| PC (base) PC (opt)
D218 200 1,359 841 1.82 9.6 748.8 463.7 119.9 74.6
D218 500 2,868 1,890 4.01 | 19.9 715.2 471.2 120.8 79.9
D500 200 4,125 1,772 6.4 13 641.3 275.5 213.0 91.9
D500 500 7,872 3,784 | 14.18 | 22.9 555.1 266.8 212.9 102.7
D855 200 12,516 4,269 | 19.37 | 23.6 646.2 220.4 291.8 100.0
D855 500 23,947 9,604 | 42.69 | 41.6 560.8 224.9 284.6 114.4
D1604 200 | 38,333 12,109 | 60.50 | 42.5 633.6 200.1 372.6 118.0
D1604500 | 69,815 22,684 | 133.26| 68.8 523.9 170.2 345.9 112.6
Table Il

TOTAL EXECUTION TIMES (IN SECONDS) OF THE ALIGNMENT KERNEL AND THE TRACE-BACK STEP OF THEPAPARA ALGORITHM AND THE
RESPECTIVE SPEED UPS OF THEPGASYSTEM FOR THE ALIGNMENT KERNEL AND FOR THE COMPLETE APPLICNON. THE STANDARD ALGORITHM
IMPLEMENTATION IS DENOTED ASbasewHILE THE OPTIMIZED VERSION IS DENOTED ASOpt

of cell updates as the current hardware design. The seconthnsfers, every SPU only generates a 16-bit alignmengscor
phase of PaPaRa (‘alignment phase’) is always executed oralue every INTERVAL(QCD) * R_CD clock cycles. The
the PC for the software-based FPGA-accelerated implemedNTERVAL (Query length) function returns the number of
tation. Table Il provides execution times and the speedupslock cycles spent by thi 8 CORINGCELL_ARRAYfor each
that can be achieved by offloading the alignment kernel taolumn/site of the matrix (each ancestral vector state).

a Virtex 6 FPGA that contains 12 SPUs. The input dataset
names in the left column denote the number of taxa in the
original biological dataset followed by the average QSteng  We presented a hardware/software implementation for

VII. CONCLUSIONS& FUTURE WORK

(see [2]). boosting performance of a novel short read alignment
The required data transfer rate for a SPU-based acceleratorethod, that simultaneously aligns reads to reference mul-
system is given by the following formula: tiple sequence alignments and corresponding phylogenetic
trees. The software and hardware implementations are avalil
[ = [(SPU_N « SC_N +Q_CD) + R_CD]/CLK_P able for download as open source code. The reconfigurable

architecture was verified on an actual Virtex 5 FPGA and
whereSPU_N is the number of SPUs in the design (12 in the functionality of the communication protocol was tested
our implementation)SC_N is the number of scoring cells using gigabit ethernet. The hardware architecture actieve
in the processing array of each SPU (100 in our implemenspeedups for the score calculation phase of PaPaRa ranging
tation), Q CD andR _CD is the number of bits required for between 170 and 471 on a Xilinx Virtex 6 FPGA compared
representing a QS character and a RS ancestral state for otte the most efficient software version of PaPaRa on an
site (2 and 5 in our implementation), and finalGLK_P  Intel Core i5 CPU running at 3.2GHz. To the best of our
is the clock period. Based on the above formula, for theknowledge, this represents the first FPGA-based acceterato
given configuration, data has to be provided to the SPUs at architecture for this novel alignment kernel.
rate of 31.2 Gb/s in order to achieve the maximum possible With respect to future work, we plan to initially improve
speedups reported in Table II. While this transfer rate ishe computational pipeline datapath. Additional pipeline
higher than what we can currently achieve with existing PCstages will be introduced to allow for a higher max-
FPGA communication methods like Gigabit Ethernet (maximum SPU operating clock frequency. Furthermore, we
125MB/s) or PCI Express (max. 16 GB/s), the requiremenplan to adapt the communication protocol for eliminating
can be met by using block ram memory based input/outpunput/output delays. The current communication protocol
buffers for storing input data. Ideally, (i.e., if the inpddéita  does not represent the ideal solution, since the synchro-
fits into the buffer), each query and reference sequence wikization between the host PC and the SPUs is achieved by
have to be transferred to the respective buffer only onceonsecutive retransmissions of the same reference aaicestr
and can then be fed into the SPUs several times. Clearlgtate sequence. Thus, we plan to design an improved soft-
the efficiency of this approach depends on an appropriateare/hardware implementation that can pre-load the input
input/output buffer size and a suitable buffer managemenfiles into the memory on the FPGA or the external memory
Note that, the communication overhead for transmitting theon the board. A dedicated I/O controller comprising a set
results produced by the SPUs (i.e., the final matrix scoresdf memory buffers will be used for hiding communication
back to the PC can be neglected. In contrast to input datiatency from the SPUs and thereby allow them to operate



at maximum speed. If gigabit ethernet is not sufficient[11] D. Sankoff, “Minimal mutation trees of sequenceSJAM. J.
for achieving this, we will consider a solution using PCI Appl. Math, vol. 28, pp. 35-42, 1975.

EXXreiﬁ- direction of fut s to optimize th ber 121 I Li. W. Shum, and K. Truong, “160-fold acceleration
nother direction of future work Is to optimize the number of the smith-waterman algorithm using field programmable

of parallel scoring cells in a processing unit. The fixed gate array (fpga),”BMC Bioinformatics vol. 8, no. 1, p.
number of 100 scoring cells in the current proof-of-concept 185, 2007. [Online]. Available: http://www.biomedcentra
implementation was merely chosen for verification purposes ~ com/1471-2105/8/185
We plan on conducting performance tests using the PaPa .

ftvF\)/ d | g|(§) bioloaical data to d gt . thﬁﬁ] C. Yu, K. Kwong, K. Lee, and P. Leong, “A smith-waterman
SO_ aré and real-wor lologica ‘?‘a 0 determine {he systolic cell,” in New Algorithms, Architectures and Ap-
optimal number of SPUs across a wide range of datasets. piications for Reconfigurable Computing. Lysaght and
Finally, we will investigate if alternative acceleratorcke W. Rosenstiel, Eds. Springer US, 2005, pp. 291-300.
nologies, such as GPUs, can be used to achieve comparable

; s 4] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A recon-
speedups or even outperform FPGAs for this specific typél figurable accelerator for smith-waterman algorithm,|EEE

of application. Trans. Circuits and Systems, 2007, pp. 1077-1081.
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