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Abstract—Recent advances in molecular sequencing tech-
nology have given rise to novel algorithms for simultaneously
aligning short sequence reads to reference sequence alignments
and corresponding evolutionary reference trees. We present a
complete hardware/software implementation for the accelera-
tion of a program called PaPaRa, a newly introduced dynamic
programming algorithm for this purpose.

We verify the correctness of the proposed architecture on
a real FPGA and introduce a straight-forward communication
protocol (using gigabit ethernet) for seamless integration with
the encapsulating steering software that is executed on a
PC processor. The hardware description and the software
implementation are freely available for download.

When mapped to a Virtex 6 FPGA, our reconfigurable ar-
chitecture can compute 133.4 billion cell updates per second for
the novel, tree-based alignment kernel of PaPaRa. Compared
to PaPaRa, running on a 3.2GHz Intel Core i5 CPU, we obtain
speedups for the alignment kernel, that range between 170 and
471. For the entire application, that is, the alignment kernel
and the trace-back step, we obtain speedups between 74 and
118.

Keywords-FPGA, dynamic programming, multiple align-
ment, phylogenetic inference

I. I NTRODUCTION

Significant advances in molecular wet-lab sequencing
techniques, that is, methods for determining the order of
nucleotides in a DNA molecule, have led to a tremendous
biological data flood in recent years. The termshort
read refers to DNA sequence data that are produced by
a new-generation sequencer. Current state-of-the-art pyro-
sequencing technologies can generate between 100,000 to
1,000,000 short reads. The read lengths typically vary be-
tween 30 and 450 nucleotides. To allow for an efficient and
accurate phylogenetic analysis of such short read samples,
novel maximum likelihood-based methods [1] have recently
been introduced ([2], [3], [4]). These approaches, known as
phylogenetic placement algorithms, assign the short reads
to a fixed, given reference phylogeny, that is, an unrooted
phylogenetic (evolutionary) tree which is based on a given
multiple sequence reference alignment. Before applying one
of the above phylogenetic placement algorithms, all short
reads must be aligned to the reference alignment.

Here, we present a FPGA-based system for the accel-
eration of PaPaRa [2] (PArsimony-based Phylogeny-Aware
short Read Alignment), a novel method for aligning short

reads to a fixed reference alignment that also uses the in-
formation contained in the respective evolutionary reference
tree. Although short reads can be aligned with respect to a
reference alignment using the HMMALIGN tool (part of the
HMMER [5] tool suite), PaPaRa outperforms HMMER in
the context of phylogenetic short read placement, because
the tree structure (phylogeny) is also incorporated by Pa-
PaRa [2] for the alignment process. Like most alignment
methods, PaPaRa is based on a dynamic-programming al-
gorithm. The underlying principle is similar to the Smith-
Waterman algorithm [6], with affine gap penalties [7]. How-
ever, the specific alignment kernel in PaPaRa is used to
align a sequence (a short read) against an ancestral state
vector that is derived from varying positions (branches) in
the phylogenetic reference tree.To this end, compared to the
Smith-Waterman algorithm, PaPaRa implements a unique
alignment kernel and scoring scheme. Moreover, the PaPaRa
alignment kernel is ’one-sided’, that is, gaps can only be
inserted into the query sequence andnot into the reference
alignment.

The source code of PaPaRa is available as part of
RAxML [8] (http://wwwkramer.in.tum.de/exelixis/papara.
tar.gz), a popular likelihood-based phylogenetic inference
program. Profiling of the PaPaRa source code revealed
that the scoring function (the alignment kernel) accounts
for 98% to 99.5% of overall execution time. To date,
reconfigurable devices have already successfully been de-
ployed to accelerate Bioinformatics applications including
phylogenetic inference kernels [9] and a plethora of pair-
wise sequence alignment algorithms [10]. Since PaPaRa uses
phylogenetic inference and alignment kernels we explore
FPGA technology to accelerate the code.

The FPGA-based system we introduce here is able to
reduce the execution time of the PaPaRa kernel by up to
748 times compared to executing PaPaRa on an Intel Core i5
CPU running at 3.2GHz. The underlying system architecture
of our design is to offload the scoring function (align-
ment kernel) calculations to dedicated hardware components
(henceforth denoted as: Score Processing Units, SPUs) on
the FPGA. The software implementation on the PC side
is used to orchestrate computations, collect the scores, and
perform the final trace-back step of the alignment algorithm.
To allow for reproduction of all results in this paper the



software implementation and the hardware description of
the FPGA design are available as open-source code at:
http://wwwkramer.in.tum.de/exelixis/FPGApapara.tar.gz.

The remainder of the paper is organized as follows:
Section II describes the PaPaRa algorithm. In Section III,
we review related work on FPGA-based accelerators for
standard alignment algorithms. The reconfigurable architec-
ture of the Score Processing Unit (SPU) is described in
Section IV while Section V provides a detailed descrip-
tion of the verification process and the design of a fully
functional FPGA-based system. In Section VI we provide
performance results for our FPGA accelerator. We conclude
in Section VII.

II. T HE PAPARA ALGORITHM

The algorithm aligns short reads, henceforth denoted as
query sequences (QS), against ancestral state vectors derived
from the reference multiple sequence alignment (RA) and
the corresponding phylogenetic reference tree (RT) that has
been inferred using the RA. In a phylogenetic tree, known
sequences (e.g., nucleotide or amino-acid sequence data)
of living species (taxa) are assigned to the leaves (tips)
of the tree. The internal nodes correspond to hypothetical
common ancestors of the subtrees they define. Because the
real sequences at the ancestral nodes are not known, different
methods for representing the inherent uncertainty of ances-
tral states (ancestral sequences) have been introduced in
the context of functions for scoring alternative phylogenetic
trees (different evolutionary hypotheses).

The maximum parsimony (MP) method is a widely used
optimality criterion for phylogenetic inference. Given a
fixed multiple sequence alignment, the idea is to find the
phylogenetic tree which explains the alignment by the least
number of mutations. For nucleotide sequences (DNA/RNA)
the alphabet contains four characters: A (Adenine), C (Cy-
tosine), G (Gouanine), and T (Thymine). The computation
and representation of ancestral state vectors under parsimony
is described in [11]. The key point is that for DNA data,
every edge (branch)b in the RT can be represented by
a parsimony state vectorAb = A1

b , ..., A
n
b , where each

individual Ai
b represents the parsimony state of alignment

site i (i.e., column i) of the RA. The individual entries
in the parsimony state vector consist of bit vectorsAi

b =
ai

b(A), ai
b(C), ai

b(G), ai
b(T ) ∈ [0, 1]

4, where the individual
bits in ai

b correspond to the four DNA characters. This is
a key difference to the simpler case of pair-wise sequence
alignment, where both input sequences can only have one
character per site. Here, every site inAb can be either an
A, C, G, or T, or any possible combinations thereof (i.e.,
an ancestral site can be an A or a T), to reflect the inherent
uncertainty of ancestral sequence states.

In PaPaRa all QS are aligned against all ancestral state
vectors for all edges of the RT. The ancestral state vectors
are obtained by successively (one at a time) inserting (and

   A 0 2 0 0 0 0 0

   C   0 2 0 0 2 0 2

   A     0 2 0 0 2 3 4

   T       3 5 3 0 2 3 4

   G         6 8 3 3 2 3 4

a(A) 1 0 1 1 1 1 1 0 0 1 0
a(C) 0 1 0 1 1 0 1 0 0 1 0
a(G) 0 0 0 1 0 0 1 0 1 1 1
a(T) 0 0 0 0 0 0 1 1 0 0 0

     - - - A C - A T G - -

QS

Ancestral State Vector

aligned QS

Figure 1. Example of a dyamic-programming matrix for aligning a QS
against an ancestral state vector. The positions for which the QS characters
match the bits in the ancestral state vector are highlighted.

removing again) an additional node (’virtual root’) into each
edge of the RT. The ancestral state vector is then calculated
for each virtual root (each edge of the RT) by combining
the ancestral states of the left and right internal nodes that
are attached to the branch under consideration. In addition
to the ancestral state vectors, PaPaRa computes and uses
an additional, dedicated signal which provides information
about the distribution of gaps in the RT. This signal consists
of a supplementary flag (CGAP) for each sitei which
is used to appropriately adapt the scoring function of the
dynamic programming implementation. The CGAP signal is
calculated along with the ancestral state vectors, according
to the rules described in [2].

The alignment scoring function is provided in equation 1.
The equation recursively defines the score of the dynamic-
programming matrix cellDi,j in column i and row j for
aligning siteAi of the ancestral state vector against siteBj

in the QS.

CGi =

{

10 if CGAP is set for sitei

0 otherwise

(GP i
OE , GP i

E) =

{

(2, 1) if CGi = 0

(0, 0) otherwise

Si,j =

{

0 if AiandBjmatch
3 otherwise

D
i,j

E
= min

{

Di−1,j + GP i
OE

D
i−1,j

E
+ GP i

E

Di,j = min

{

Di−1,j−1 + Si,j + CGi

D
i,j

E

(1)

For instance, an ancestral stateAi at site i with Ai =
[1100] means that, As and Cs in the QS under consideration
can be matched against alignment sitei of the ancestral
state without incurring a mismatch penalty. Thus, for scoring
mismatches via the respective functionSi,j, the default mis-
match penalty of3 will be used, unless the bit corresponding
to the character at positionj in the QS is set inAi. When
this matching condition is met, the score returned bySi,j is



0. The special way in which match and mismatch penalties
are treated along with the phylogeny-aware adaptive scoring
scheme (CGi) in PaPaRa represent a key difference to
standard dynamic programming alignment methods. Further-
more, alignments are one-sided, which means that gaps can
only be inserted into the QS. Figure 1 depicts an example
of the dynamic programming matrix. The Figure shows the
bit-vector representation of an ancestral state vector andthe
positions where the QS characters match the ancestral state.
For the sake of simplicity, the additional CGAP signal is not
shown in the example.

The PaPaRa algorithm consists of two phases. Initially, all
QS are aligned against all ancestral state vectors in the RT.
For each QS only the best alignment score is retained. Thus,
given an RT withr taxa,m sites, andq QS, the program
needs to executeO(rq) alignment steps orO(rqm2) opera-
tions. During the initial phase, the actual alignments are not
generated (i.e., the ’traceback’ step is not performed) for
performance reasons. During the second phase (given the
best scores for all QS), the actual alignments are generated
by aligning each QS again, but only against the respective
ancestral state vector that produced the best score for the QS
during the alignment step. As already mentioned, the initial
(all QS against all ancestral probability vector) alignments
account for more than 98% of overall runtime. Thus, this
initial alignment phase represents the natural candidate for
a FPGA-based acceleration.

III. R ELATED WORK

FPGAs have already successfully been used to accelerate
DNA and protein alignment methods that rely on dynamic
programming algorithms (e.g., the Smith-Waterman [6] algo-
rithm). While there already exists a comprehensive bibliog-
raphy dealing with this general and important topic, we are
not aware of any recent papers that specifically focus on the
acceleration of short read alignment against fixed reference
alignments.

In [12], Li et al. presented a FPGA-based acceleration
of the Smith-Waterman algorithm. They obtained a speedup
of 160 compared to a C software implementation running
on the same FPGA (Altera Stratix EP1S40 FPGA) on an
Altera Nios II soft processor. The reconfigurable hardware
part designed to accelerate dynamic programming matrix
cell updates had a maximum operating clock frequency of
3.1 MHz and a peak performance of 24.5 million CUPS
(dynamic programming cell updates per second).

Yu et al. [13] presented an architecture for the Smith-
Waterman algorithm based on a systolic cell array. Due to
the efficiency of their design, they managed to instantiate
4032 processing elements on a Xilinx XCV1000E-6 FPGA.
Operating at a clock frequency of 202 MHz, their system
achieved a performance of 814 billion CUPS.

Several alternative implementations for accelerating the
Smith-Waterman algorithm using FPGAs ([14], [15]), vec-
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Figure 2. Top-level block diagram of the Scoring ProcessingUnit.

tor operations on x86 CPUs [16], and GPUs (e.g., using
CUDA [17]) exist. However, because the PaPaRa align-
ment kernel differs significantly from the standard Smith-
Waterman implementation, we omit a more detailed review
at this point. There also exists related work on accelerating
the (more complex) dynamic programming kernel of HM-
MER [5]. For an overview of FPGA accelerator architectures
for the Virterbi algorithm used in HMMER, please refer
to [18]. Performance results vary between 0.7 and 20 million
CUPS.

Note that, PaPaRa is currently the only dedicated algo-
rithm for aligning QS against a multiple sequence alignment
and a corresponding phylogenetic reference tree. Existing
alternative algorithms that could be used in this context
are based on aligning QS against a flat (non-phylogenetic)
profile that is derived from the multiple sequence alignment
without taking the phylogenetic tree into account. Existing
tools which can be used for sequence/profile alignment are
HMMAlign [5], MUSCLE [19], and MAFFT [20].

In addition to implementing this novel algorithm, our
hardware implementation is also unique because we deploy
the UDP-IP protocol over standard gigabit ethernet for PC-
FPGA communication [21]. This allows for a seamless
integration of the FPGA accelerator for the alignment kernel
with the PaPaRa algorithm running on a standard Linux
PC. Related FPGA implementations of the Smith Waterman
algorithm used FPGA boards that were connected to the PC
via the PCI bus [22] or directly via the CPU bus [23].

IV. T HE SPU ARCHITECTURE

In the following we present the reconfigurable architecture
of the Score Processing Unit (SPU). Figure 2 depicts the
block diagram of the top-level design.

The entire control of the SPU is orchestrated by 4 finite
state machines (FSMs) that are located in the top left corner
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Figure 3. The scoring cell (SC) architecture.

of Figure 2. The FSMs operate in a master-worker scheme;
the master FSM (M FSM) initiates and synchronizes the
operation of the three worker FSMs (Q FSM, R FSM and,
PR FSM).

The Q FSM is triggered when a QS is received. The
main purpose of theQ FSM is to generate the write-enable
signal as well as the correct write addresses for theQ MEM
memory with a capacity of 200x16 bits. In each of the 16
memory lines, a total of 100 QS nucleotides are stored. The
Q MEM memory is used to store a single, incoming QS
until an ancestral reference state vector (RS) arrives against
which the QS shall be aligned. When the QS is stored in
memory, theQ FSM sends a signals to theM FSM which
then switches to reference-awaiting state.

Similar to the Q FSM, the R FSM is responsible for
storing the RS in the RS FIFO buffer (REF FIFO BUF).
The main difference between theR FSM and theQ FSM
is that, once, the first position of the RS FIFO buffer has
been filled, that is, the first state (A0) for the first site of the
RS has arrived, theR FSM immediately notifies the master
FSM.

The M FSM interprets the notification from theR FSM
as a signal to start the actual computations and therefore
triggers the processing FSM (PR FSM). ThePR FSM gen-
erates read addresses for theQ MEM andREF FIFO BUF
memories as well as all the required signals for the opera-
tion of the SCORINGCELL ARRAYwhich represents the
computational kernel of theSPU.

The SCORINGCELL ARRAYconsists of 100 scoring
cells (SCs) that operate in parallel. Figure 3 illustrates
the architecture of theSC. The output ports of eachSC
are connected to a neighboringSC as well as to theFI-
NAL SCOREDET UN unit (see Figure 2) which selects
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Figure 4. Loop control mechanism for accommodating query sequence
lengths that are larger than the number of availableSCs.

the output of theSC that corresponds to the last line of
the matrix and also determines the minimum value in that
last line. When the entire matrix has been calculated, the
FINAL SCOREDET UN unit then writes the minimum
value to theRES FIFO BUF output fifo buffer.

To accommodate scoring requests for query sequences
whose length exceeds the fixed number ofSCsavailable in
theSPU, we also integrated a loop control module. Figure 4
provides an abstract representation of this subsystem. Based
on the current position (index) of the nucleotides in the query
sequence that are provided as input at each clock cycle, the
Loop Control module either feeds the output of the lastSC
(100th in the present implementation) or a constant value
to the input ports of the firstSC. The constant values is
set to zero and can be regarded as the row of the dynamic
programming matrix at position -1. This constant zero value
essentially represents the dynamic programming matrix row
that immediately precedes the next row to be calculated.

The SC unit (Figure 3) calculates Equation 1 (see Sec-
tion II). Initially, the Bj value, which represents a 2-bit
coding of a nucleotide in the QS, is transformed into the
corresponding 4-bit representation by theNUC DEC UN
unit. Then, theQ R CMP UN unit performs a comparison
between the QS nucleotide and the current RS position.
Based on the result of this comparisonandthe CGAP signal,
the 4to1 multiplexer selects one out of the four possible
values for the intermediateDi−1,j−1 + Si,j + CGi value.
The four possible values are either one of the three constants
values for a mismatch (MisM, 3), a match with a CGAP
(MaCG, 10), or a mismatch with a CGAP (MisM+MaCG,
13), or the valueDi−1,j−1 which is the output of a neigh-
boring SC.

The three parallel components denoted asMIN in Figure 3
are used to select the minimum value among the input
signals (see Equation 1 in Section II). In fact, only twoMIN
comparison components would be required. The reason for
using an additionalMIN module is for shortening the critical
path and thereby obtain a higher operating clock frequency.
At the same time, the latency of the computational part of
the SC still amounts to only 1 clock cycle.



Finally, theVAR LEN SHFT REGcomponents are vari-
able length ram-based shift registers that increase the latency
of the SCs relative to the QS length. Since theSCOR-
ING CELL ARRAYcomprises 100SCs, scoring requests
with a QS length of less than 100 nucleotides do not
require additional latency because the processing array can
operate on a different site during every clock cycle. For
instance, when a matrix for a QS length of 350 nucleotides is
computed, theVAR LEN SHFT REGregisters will increase
the latency to 4 clock cycles. The cell values are temporarily
buffered in the pipeline stages of theSCsuntil the SCOR-
ING CELL ARRAYfinishes the operations at some sitei and
is able to proceed to sitei + 1. During the 4 clock cycles,
the QS is provided as input to theSCarray in blocks of 100
nucleotides per cycle. For 350 nucleotides, the last 50SCs
of the array will receive undefined input data in every 4th
clock cycle and the respective outputs will be ignored by
the FINAL SCOREDETECT UNIT.

V. I MPLEMENTATION, VERIFICATION & D ESIGN OF

ACCELERATORSYSTEM

We initially described the implementation and verifica-
tion of the SPU architecture (Section V-A). Thereafter, we
describe the PC-FPGA accelerator system as well as the
communication protocol between the FPGA board and the
host PC (Subsection V-B).

A. Verification of the SPU Architecture

The SPU architecture was implemented in VHDL and
initially mapped on a Virtex 5 SX95T-2 FPGA. Extensive
post place and route simulations were conducted in order
to verify the functionality and correctness of the proposed
architecture. As simulation tool, we used Modelsim 6.3f
by Mentor Graphics. We used the PaPaRa source code to
generate appropriate testbenches for real-world biological
datasets.

Thereafter, the HTG-V5-PCIE development board with
the same Virtex 5 SX95T FPGA was used for testing on
the actual chip. The main objective of these tests was to
verify the correctness of the SPU architecture. We used an
advanced verification tool (the Chipscope Pro Analyzer) to
monitor the input and output ports of the SPU.

B. FPGA-based Accelerator System

After successful verification of the SPU architecture (post
place and route simulationsand tests on an actual FPGA)
we integrated a simplified communication protocol between
the FPGA board (HTG-V5-PCIE) and the host PC. For this
purpose, a Dell Latitude E4300 series laptop with an Intel
Core2 Duo P9400 processor (2.4GHz, Ubuntu) was used.
The communication between the FPGA board and the PC
was established over Gigabit Ethernet using a dedicated
UDP/IP core for direct PC-FPGA communication [21].
Figure 5 illustrates the complete system.

UDP/IP
CORE

SPU

SPU

PaPaRa

HOST PC
ethernet cable

query and reference
sequences scores

.

.

FPGA

..

Figure 5. The FPGA-based acceleration system.

A special sequence of packets needs to be transmitted
such that, the PaPaRa software (on the PC) can trigger SPU
operations. An alignment request requires the transmission
of a Q PACK, that is, an ethernet packet that contains
the query sequence, followed by anR PACK which con-
tains the reference sequence against which the QS shall
be aligned. EveryX packets, whereX is the size of the
RES FIFO BUF, a TB PACK packet (stands for Transmit
Back) is transmitted. TheTB PACK packet indicates to
the SPU that the software is ready to receive the results
from the previous alignment requests that are stored in
RES FIFO BUF. Figure 6 illustrates the supported packet
formats.

To further optimize the communication process, we con-
figured the FPGA to transmit and receive JUMBO frames
(i.e., IP packets that are longer than the standard minimum
length of 1500 bytes). This allowed us to transmit only a
single ethernet packet for each alignment request. Thus, a
common alignment request now requires the transmission
of a new packet type, theQR PACK. Here, theQ PACK
format can be concatenated with theR PACK into the same
large UDP packet. Also, a modified transmit back request
TB QR PACK, asking for the results of a previous alignment
request, can be inserted at the beginning of the common
alignment requestQR PACK format to replace the stand-
aloneTB PACK packet.

Each packet format starts with a unique command code. In
the query and reference packets, the command code occupies
4 bytes while in the transmit back packet it occupies 2 bytes.
In addition, theQ PACKcontains one byte with zeros which
is ignored by the SPU, a selection code which is used by the
FINAL SCOREDETECT UNIT to multiplex the results of
the 100 parallelSCs, a load code which is used to control
the variable length shift registers of theSCs, and, finally,
the query sequence. Accordingly, theR PACK contains a
2-byte field that contains the reference sequence length and
thereafter the raw reference sequence data. Finally, in the
TB PACK format, the 2-byte TB command is followed by
another 2-byte field that contains the total number of results
that shall be transmitted back. The number of results can
not exceed the size of theRES FIFO BUF memory.

We created an experimental extension of the PaPaRa
program on the PC side. The original code is used for
reading input files, encoding QS and RS into the appropriate
format, sending SPU-compliant UDP packets to the FPGA,
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receiving the result packets from the FPGA, performing the
trace-back step, and generating the actual QS alignments for
the best insertion edges. The program extension was created
in C++ using the boost library (www.boost.org) for sending
and receiving UDP packets.

The fast response time of the FPGA led to a difficult
technical challenge for the PC application when synchronous
communication is used. After the jumbo UDP packet con-
taining the QS and RS has been sent (QRPACK) to the
FPGA, the FPGA will send back the resulting scores within
a very short amount of time (only 6 cycles after the end-
of-frame signal of the UDP packet is set). Because program
execution on the PC side is blocked until the whole UDP
packet has been sent via a system call, the answering packet
may already have been sent by the FPGA, before the PC
can actually start receiving it which again requires a system
call. Incoming UDP packets are generally not buffered, if no
corresponding receive operation has been initiated, that is,
the packets returned by the FPGA can be lost. Therefore, we
deploy an asynchronous communication mechanism, which
relies on a dedicated thread that initiates a receive operation,
before the QS and RS are sent to the FPGA. We used the
asynchronous IO operations as provided by the boost library
to implement this functionality.

Note that, the PAR (Place and Route) static timing report
revealed that the maximum operating clock frequency of an
SPU on a Virtex 5 SX95T FPGA is 101.52 MHz. In order to
avoid additional synchronization problems with the software
and, at the same time, be able to verify the functionality
of the proposed communication protocol, the same clock
signal of 125 MHz was used both, for the communication
components on the FPGA, and the SPU. By communication
components, we refer to the TEMAC (Tri-Mode Ethernet
Media Access Controller)and the UDP/IP core. This SPU
over-clocking caused the incorrect computation of a fraction

1 SPU 12 SPUs 1 SPU SYS
Resources V6 V6 V5

Slice Regs 7,725 92,248 8,366
Slice LUTs 29,026 347,344 29,103

Occup. Slices 7,791 88,036 9,059
BlockRAMs (36k) 5 60 5
BlockRAMs (18k) 5 60 10

TEMACs - - 1

Table I
OCCUPIED RESOURCES ON THEV5SX95TAND V6HX565T DEVICES.

of the scores by the SPU. According to the error report that
was generated by the software during the final alignment
phase, the fraction of incorrect scores due to over-clocking
the prototype system ranged between 10% and 20% of
overall SPU score requests.

VI. RESULTS

Here we present a performance assessment for our accel-
erator architecture when multiple SPUs are instantiated ona
large Virtex 6 FPGA. All results presented in the current
Section refer to Xilinx reports after the implementation
process (post place and route).

Table I provides resource usage reports for three hardware
configurations. The first column of Table I provides the
resources occupied by a single SPU instance on a Virtex 6
HX565T-2 FPGA (1_SPU_V6). According to the PAR static
timing report, the maximum operating frequency for this
unit is 140.92 MHz. The 12SPU V6 architecture comprises
12 independent SPU instances with a maximum operating
frequency of 111.17 MHz. Finally, the1_SPU_V5_SYS im-
plementation, which was described in the previous Section,
contains 1 SPU instance, a TEMAC, and a UDP/IP core.

For performance comparison we executed the software-
only implementation of PaPaRa on an Intel core i5 750
CPU running at 3.2 GHz. Initially, we measured the total
execution time for the scoring phase (aligning all QS against
all ancestral states) required by the PaPaRa implementation
for 4 real-world biological datasets. The PaPaRa software
contains a special algorithmic optimization (the so called
’early stopping criterion’), which decreases the total number
of matrix cells that need to be calculated. This trick improves
the runtime of the PaPaRa software by a factor of 2–
3 [2]. The current FPGA design does not implement this
optimization, since this would require a non-trivial re-design
of the pipeline datapath for calculating the matrix entriesand
of the communication protocol.

Nonetheless, to conduct a fair comparison, we present
performance data for the standard software implementation
as well as for the optimized software implementation with
the early stopping criterion. For a given dataset, the standard
software implementation performs exactly the same number



Alignment kernel Trace Kernel Speed Up VS Application Speed Up VS
Dataset PC (base) PC (opt) FPGA back PC (base) PC (opt) PC (base) PC (opt)

D218 200 1,359 841 1.82 9.6 748.8 463.7 119.9 74.6
D218 500 2,868 1,890 4.01 19.9 715.2 471.2 120.8 79.9
D500 200 4,125 1,772 6.4 13 641.3 275.5 213.0 91.9
D500 500 7,872 3,784 14.18 22.9 555.1 266.8 212.9 102.7
D855 200 12,516 4,269 19.37 23.6 646.2 220.4 291.8 100.0
D855 500 23,947 9,604 42.69 41.6 560.8 224.9 284.6 114.4
D1604 200 38,333 12,109 60.50 42.5 633.6 200.1 372.6 118.0
D1604 500 69,815 22,684 133.26 68.8 523.9 170.2 345.9 112.6

Table II
TOTAL EXECUTION TIMES (IN SECONDS) OF THE ALIGNMENT KERNEL AND THE TRACE-BACK STEP OF THEPAPARA ALGORITHM AND THE

RESPECTIVE SPEED UPS OF THEFPGASYSTEM FOR THE ALIGNMENT KERNEL AND FOR THE COMPLETE APPLICATION. THE STANDARD ALGORITHM

IMPLEMENTATION IS DENOTED ASbaseWHILE THE OPTIMIZED VERSION IS DENOTED ASopt.

of cell updates as the current hardware design. The second
phase of PaPaRa (’alignment phase’) is always executed on
the PC for the software-based FPGA-accelerated implemen-
tation. Table II provides execution times and the speedups
that can be achieved by offloading the alignment kernel to
a Virtex 6 FPGA that contains 12 SPUs. The input dataset
names in the left column denote the number of taxa in the
original biological dataset followed by the average QS length
(see [2]).

The required data transfer rate for a SPU-based accelerator
system is given by the following formula:

I = [(SPU N ∗ SC N ∗ Q CD) + R CD]/CLK P

whereSPU_N is the number of SPUs in the design (12 in
our implementation),SC_N is the number of scoring cells
in the processing array of each SPU (100 in our implemen-
tation),Q_CD andR_CD is the number of bits required for
representing a QS character and a RS ancestral state for one
site (2 and 5 in our implementation), and finallyCLK_P
is the clock period. Based on the above formula, for the
given configuration, data has to be provided to the SPUs at a
rate of 31.2 Gb/s in order to achieve the maximum possible
speedups reported in Table II. While this transfer rate is
higher than what we can currently achieve with existing PC-
FPGA communication methods like Gigabit Ethernet (max.
125MB/s) or PCI Express (max. 16 GB/s), the requirement
can be met by using block ram memory based input/output
buffers for storing input data. Ideally, (i.e., if the inputdata
fits into the buffer), each query and reference sequence will
have to be transferred to the respective buffer only once
and can then be fed into the SPUs several times. Clearly,
the efficiency of this approach depends on an appropriate
input/output buffer size and a suitable buffer management.
Note that, the communication overhead for transmitting the
results produced by the SPUs (i.e., the final matrix scores)
back to the PC can be neglected. In contrast to input data

transfers, every SPU only generates a 16-bit alignment score
value every INTERVAL(QCD) * R CD clock cycles. The
INTERVAL (Query length) function returns the number of
clock cycles spent by theSCORINGCELL ARRAYfor each
column/site of the matrix (each ancestral vector state).

VII. C ONCLUSIONS& FUTURE WORK

We presented a hardware/software implementation for
boosting performance of a novel short read alignment
method, that simultaneously aligns reads to reference mul-
tiple sequence alignments and corresponding phylogenetic
trees. The software and hardware implementations are avail-
able for download as open source code. The reconfigurable
architecture was verified on an actual Virtex 5 FPGA and
the functionality of the communication protocol was tested
using gigabit ethernet. The hardware architecture achieved
speedups for the score calculation phase of PaPaRa ranging
between 170 and 471 on a Xilinx Virtex 6 FPGA compared
to the most efficient software version of PaPaRa on an
Intel Core i5 CPU running at 3.2GHz. To the best of our
knowledge, this represents the first FPGA-based accelerator
architecture for this novel alignment kernel.

With respect to future work, we plan to initially improve
the computational pipeline datapath. Additional pipeline
stages will be introduced to allow for a higher max-
imum SPU operating clock frequency. Furthermore, we
plan to adapt the communication protocol for eliminating
input/output delays. The current communication protocol
does not represent the ideal solution, since the synchro-
nization between the host PC and the SPUs is achieved by
consecutive retransmissions of the same reference ancestral
state sequence. Thus, we plan to design an improved soft-
ware/hardware implementation that can pre-load the input
files into the memory on the FPGA or the external memory
on the board. A dedicated I/O controller comprising a set
of memory buffers will be used for hiding communication
latency from the SPUs and thereby allow them to operate



at maximum speed. If gigabit ethernet is not sufficient
for achieving this, we will consider a solution using PCI
Express.

Another direction of future work is to optimize the number
of parallel scoring cells in a processing unit. The fixed
number of 100 scoring cells in the current proof-of-concept
implementation was merely chosen for verification purposes.
We plan on conducting performance tests using the PaPaRa
software and real-world biological data to determine the
optimal number of SPUs across a wide range of datasets.
Finally, we will investigate if alternative accelerator tech-
nologies, such as GPUs, can be used to achieve comparable
speedups or even outperform FPGAs for this specific type
of application.
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