
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–6

Supplementary Material: RAxML-Light: A Tool for
computing TeraByte Phylogenies
A. Stamatakis 1,∗∗, A.J. Aberer 1, C. Goll 1, S.A. Smith 2, S.A. Berger 1,
F. Izquierdo-Carrasco 1

1 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies,
Schloss-Wolfsbrunnenweg 35, D-68159 Heidelberg
2Blackrim Lab, Department of Ecology and Evolutionary Biology, University of Michigan, 2071A
Kraus Natural Science Building, 830 North University Ann Arbor, MI 48109-1048
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
In this supplement we discuss a couple of implementation details

that may be of interest/relevance to other software developers as well
as users that want to get optimal performance from the code.
Availability:
https://github.com/stamatak/RAxML-Light-1.0.5

Contact: Alexandros.Stamatakis@h-its.org

1 THE FORK-JOIN MODEL WITH MPI
The fork-join paradigm is typically used for parallelizingcode with
OpenMP or PThreads on shared-memory architectures. In other
words it is not the standard programming paradigm when using
distributed memory and MPI.

RAxML-Light has different types of parallel regions (e.g.,
compute a Newton-Raphson step for optimizing a branch, evaluate
the log likelihood score at the virtual root of the tree, or compute the
conditional probability arrays for all or a part of the nodesin a tree)
that require varying amounts of data to be transferred to theworker
processes.

When using shared memory this is easy, because the data is
already there and can be accessed via the shared memory.

The problem with MPI is that, when doing collective
communication operations withMPI_Bcast() (to enter a
parallel region, i.e., to execute a fork) the size of the data
to be communicated needs to be known prior to invoking
MPI_Bcast() .

However, if we communicate tree traversal descriptors (seeOtt
et al. (2007) and Stamatakis & Ott (2008) for details; a similar
data-structure is used in BEAGLE) the length of those traversal
descriptors (depending whether we are doing a full or partial tree
traversal) will vary.

Hence, normally twoMPI_Bcast() invocations will be
required for each fork at each parallel region, one for
communicating the length of the data and type of the parallel
region and the second one to actually broadcast the data. This is
evidently suboptimal, because collective communication operations

∗to whom correspondence should be addressed

are expensive and keep the worker processes from doing actual
work, that is, doing likelihood computations.

The problem could be alleviated by applying some trade-off
engineering. We analyzed the traversal descriptor length distribution
in RAxML and found that the vast amount of traversal descriptors is
relatively short, i.e., smaller than 5 to 10 nodes. This is because
of the specifics of the RAxML search algorithm (the so-called
lazy subtree rearrangements) that usually only apply localchanges
to the tree and therefore require only partial tree traversals (short
traversal descriptors). Similar lazy techniques are used in GARLI
and PHYML.

Based on this observation we tried to come up with a latency-
bandwidth trade-off (two broadcast operations versus mostly one
broadcast communicating more data). The idea is to broadcast a
traversal descriptor of a fixed length of 5 entries (5 inner nodes) by
default with the first broadcast and only execute a second broadcast
if the traversal descriptor actually is longer. This optimization
yielded a performance improvement of 10-15% during the initial
code development tests.

2 THREAD-TO-CORE PINNING
An issue that users are typically not aware of is the potential negative
impact of the thread-to-core pinning when less threads are used than
are available on a multi-core node. A detailed analysis of such issues
for several diverse scientific applications is provided in (Klug et al.,
2011).

Consider the following case: We want to execute the PThreads-
version of RAxML-Light with 24 cores on a 48-core machine
as used in our experiments in the paper. The two alternative
options are to pin the 24 threads to cores0, 1, 2, ..., 23 or to cores
0, 2, 4, ..., 48. In the latter case (pinning to every second core),
since two cores are typically sharing a cache memory, each core
will have a larger amount of cache memory available and thus each
thread/core will potentially have to wait less frequently to retrieve
data from RAM. Since likelihood-implementations are typically
memory-bandwidth bound because of the linear memory accesses
to conditional probability vectors, especially for data with few
states (binary or DNA data), the core pinning can have a negative

c© Oxford University Press 2005. 1

Stamatakis et al

Table 1. Impact of thread pinning and hyperthreading on RAxML-Light
Performance

Taxa Patterns Data Type System Pinning Execution time

25 55,706 PROT Magny-Cours 0,1,2,...,23 1099.75 secs
25 55,706 PROT Magny-Cours 0,2,4,...,46 1137.59 secs
54 552,089 PROT Magny-Cours 0,1,2,...,23 891.55 secs
54 552,089 PROT Magny-Cours 0,2,4,...,46 879.68 secs
125 19,436 DNA Intel Desktop 0,1,2,...,8 176.91 secs
125 19,436 DNA Intel Desktop 0,1,2,3 187.28 secs
125 19,436 DNA Intel Desktop 0,2,4,6 304.35 secs

The large 54 taxon dataset was not run to completion and stopped at an intermediate
checkpoint.

impact on performance. In particular on DNA data, the numberof
computations per data access is unfavorable.

As test system we used an Intel 4-core desktop equipped with
Intel i7-2600 cores running at 3.40GHz and 16GB RAM. We also
used a stand-alone 48-core Magny-Cours server, equipped with
256GB RAM. The test results are summarized in Table 1.

Unfortunately, we are not aware of any portable or easy-to-
compile/available on all systems tool or library that can beused
under Linux to enforce thread pinning. What has worked well for
us are some library calls that can be activated in RAxML-Light by
commenting out#define _PORTABLE_PTHREADS in source
file axml.c . This will make RAxML to call the following function
in the same source file:

#ifndef _PORTABLE_PTHREADS

static void pinToCore(int tid)
{

cpu_set_t cpuset;

CPU_ZERO(&cpuset);
CPU_SET(tid, &cpuset);

if(pthread_setaffinity_np(pthread_self(),
sizeof(cpu_set_t), &cpuset) != 0)

{
/ * print error messages and exit * /

}
}

#endif

The above call will pin threads to cores0, 1, 2, If modified as
follows: CPU_SET(2 * tid, &cpuset); it will pin threads
to cores0, 2, 4, etc.

Initially, we tested thread pinning impact on the 48-core Magny-
Cours server with a protein dataset comprising 25 taxa and 219,023
sites (55,706 distinct site patterns).

With a thread pinning to cores0, 1, 2, ..., 23 we executed
RAxML-Light as follows:

raxmlLight-PTHREADS -T 24 -s ALL.aln -m PROTGAMMAWAG
-t RAxML_parsimonyTree.START.0 -n T012345

and measured an execution time of 1099.75 seconds.
We then changed the core pinning to0, 2, 4, ..., 46 and executed

RAxML-Light as follows:

raxmlLight-PTHREADS -T 24 -s ALL.aln -m PROTGAMMAWAG
-t RAxML_parsimonyTree.START.0 -n T0246

to obtain an execution time of 1137.59 seconds.
As can be seen in this example, the naı̈ve or cache-unaware

pinning still performs better than the thread-to-core pinning that
provides more cache to each thread.

We then executed RAxML-Light on the larger protein dataset (54
taxa, 552,089 site patterns) as follows:

raxmlLight-PTHREADS -T 24 -m PROTGAMMAWAG
-G 54_962787.phy.binary
-i 5 -m PROTGAMMAWAG -G 54_962787.phy.binary
-t RAxML_parsimonyTree.54_962787_ML.RUN.1
-n BIG_012345689

with a pinning to cores0, 1, 2, ...23 and obtained an execution
time (until the second intermediate tree that was written; not
executed to completion) of 891.55 seconds.

We then changed the thread pinning again (0, 2, 4, ..., 46) and
executed RAxML-Light as follows:

raxmlLight-PTHREADS -T 24 -m PROTGAMMAWAG
-i 5 -m PROTGAMMAWAG -G 54_962787.phy.binary
-t RAxML_parsimonyTree.54_962787_ML.RUN.1
-n BIG_02468

to obtain 879.68 seconds until the second intermediate tree.
Hence, in this case and on the specific system, thread-to-core
pinning related differences are negligible. However, thisdepends on
a lot of hardware parameters such as cache size (of the entirecache
hierarchy), the level at which caches are shared, and the quality
of the cache-line pre-fetching mechanisms that are implemented in
hardware. On older systems (a SUN x4440 with 24 cores) we had
observed larger performance discrepancies up to 25%. Thus,this is
definitely an issue that should be thoroughly tested and assessed on
a per-system basis prior to executing large production runs.

Note that, -i 5 is a standard RAxML option, while via
-G 54_962787.phy.binary we read in a pre-parsed binary
alignment file that reduces the I/O time for the alignment. The
binary alignment file was generated by invoking thesequential
version of RAxML-Light as follows:

raxmlLight -B -m PROTGAMMAWAG -s 54_962787.phy
-n GENERATE

At this point we also need to post a warning about hyperthreading.
For RAxML-Light as well as for many other scientific applications,
where all threads do homogeneous calculations (competing for the
same resources on the processor), hyperthreading does typically not
work too well. Unfortunately, the Linuxtop command often tricks
users because it shows, for instance, 8 cores (including thevirtual
ones for hyperthreading) instead of just the 4 physical ones(as on
our Intel test system) that are there. Nonetheless, hyperthreading
can yield some speedups, but they will evidently not be linear.

On the Intel desktop, we executed the PThreads and AVX-based
version of RAxML as follows to test hyperthreading performance:

raxmlLight-PTHREADS-AVX -T 8 -s 125
-t RAxML_parsimonyTree.125.START.0
-m GTRCAT -n T8

and measured an execution time of 176.91 seconds.

2

TeraByte Phylogenies

We then executed the same code again, but with 4 threads which
were pinned to the 4 physical cores (0, 1, 2, 3):

raxmlLight-PTHREADS-AVX -T 4 -s 125
-t RAxML_parsimonyTree.125.START.0
-m GTRCAT -n T4_0123

We measured an execution time of 187.28 seconds. Thus, hyper-
threading can yield a slight performance improvement on this
specific hardware.

Finally, we executed RAxML-Light with 4 threads again, but
pinned only two threads to physical cores and the two other threads
to virtual cores:

raxmlLight-PTHREADS-AVX -T 4 -s 125
-t RAxML_parsimonyTree.125.START.0
-m GTRCAT -n T4_0246

We obtained an execution time of 304.35 seconds.

3 INITIAL EXPERIENCES WITH AVX INTRINSICS
Our initial experiences with AVX were rather surprising. The
target functions to optimize/vectorize first are the functions called
newview...() in source filenewviewGenericSpecial.c .
This function computes the conditional probability vectorat a node
p, given the respective child nodes,q andr and accounts for 60-70%
of total execution time. We started vectorizing the relevant functions
directly with the AVX intrinsics and not relying on automatic
vectorization by the compiler based on previous experiences.

After having vectorized the target functions with the intrinsics,
we re-compiled all source files with the-mavx flag. However,
the overall execution times were worse than for the SSE3-based
version of the code. A detailed investigation revealed that, while
indeed thenewview...() functions had become faster due to
AVX intrinsics, by defining the-mavx flag, the gcc compiler
tried to automatically vectorize other parts of the code that normally
do not contribute that much to the overall run times. However, by
automatic vectorization, those insignificant parts of the code became
so slow, such that an overall slowdown was observed. To keep the
compiler from auto-vectorizing code that it shall not vectorize we
moved the AVX-basednewview...() function implementations
to a separate source file and only compile this file with the-mavx
flag.

This is the AVX version for which we report performance in the
paper. Generally, it seems that as longer vector units will become,
the more difficult it will be for compilers to automatically vectorize
code. The next generation of general purpose CPUs will presumably
already have 512-bit wide vector units per core. Thus, we advocate
in favor of a more generic programming style, that formulates
all computations as vector operations on vectors of arbitrary/user-
defined length. Abstract vector operations can then be mapped
to the respective intrinsics that are actually used. Such a generic
vector-based programming style will also allow for easier and more
straight-forward porting of codes to GPUs which are, in essence,
very wide vector processors.

Finally, we have also integrated fused multiply-add (FMA)
256-bit vector intrinsics into RAxML-Light. At present these
instructions can only be executed by the new AMD Bulldozer
processors. The main application of the FMA-based version of
RAxML-Light is for benchmarking purposes.

Table 2. Execution times of unvectorized, SSE3-
and AVX-vectorized Parsimonator versions

unvectorized SSE3 intrinsics AVX intrinsics

4.75 secs 1.54 secs 0.95 secs

All times were measured on an Intel i7-2620M core running
at 2.70GHz.

3.1 Parsimony performance of SSE3 and AVX
intrinsics

For using RAxML-Light, one has to initially generate a
randomized stepwise addition starting tree (or some other
reasonable starting tree) either using the dedicated smallhelper
program we have developed called Parsimonator (v.1.0.2, available
at https://github.com/stamatak/Parsimonator-1.
0.2) or the standard RAxML version (https://github.
com/stamatak/standard-RAxML) with the -y option that
computes a parsimony tree and then exits.

In principle, parsimony computations just require bit-wise
operations (and, or, nand etc) and a population count, that is a
method that counts the number of set bits in a word of 8 or 16 bytes
for instance. Hence, the bit-wise operations provided by AVX or
SSE3 intrinsics can easily be deployed to implement fast parsimony
functions.

While the search strategy we use is relatively simplistic
(randomized stepwise addition followed by a couple of Subtree
Pruning and Re-Grafting moves), we believe that the implementations
in Parsimonator and standard RAxML currently represent thefastest
open-source implementation of parsimony.

We conducted some small tests with Parsimonator to highlight the
performance differences between unvectorized, SSE3- and AVX-
vectorized code. As hardware platform we used an Intel i7-2620M
core running at 2.70GHz (the laptop of A.S.). We used the same
DNA test dataset as above with 125 taxa and approximately 30,000
sites.

The test results are summarized in Table 2.
We first executed the non-vectorized version as follows:

./parsimonator -s 125.phy -p 12345 -n TEST_1

and measured a run-time of 4.75 seconds. Then, we executed the
SSE3 version:

./parsimonator-SSE3 -s 125.phy -p 12345 -n TEST_2

and obtained a run time of 1.54 seconds. Note that, in the bestcase,
we would expect to obtain a four-fold speedup here, since 4 32-bit
integers fir into one 128 bit SSE3 register.

Finally, we measured AVX performance by invoking Parsimonator
as follows:

./parsimonator-AVX -s 125.phy -p 12345 -n TEST_3

and obtained a run-time of 0.95 seconds.
The performance of the parsimony functions implemented in

standard RAxML is analogous, albeit a bit slower, mainly because
the implementation is more generic (it can compute the parsimony
score on input data with an arbitrary number of states) and because

3

Stamatakis et al

there is more overhead involved in reading, error checking,and
parsing the input alignments.

4 CHECKPOINTING
Implementing checkpointing for RAxML-Light posed several
challenges. Unlike search strategies like MCMC in Bayesian
programs or the genetic algorithm implemented in GARLI, that
essentially consist of state transitions between generations, such that
the state data to be saved always entails the same data structures and
variables, hill-climbing algorithms as implemented in RAxML or
PHYML are more difficult to checkpoint and restart.

The problem with RAxML is, that as described in the original
papers (Stamatakiset al. (2005) and Stamatakis (2006)) the search
strategy executes two or three distinct iterative hill-climbing steps.
Thus, when restarting the code, one has to save additional state
data and even local loop variables to be able to jump back into
exactly that iterative routine where the checkpoint was last written.
While, in principle, this is relatively straight-forward,the potential
for integrating bugs is enormous.

Another issue we dealt with was how to store the tree data
structure, especially with respect to keeping the nodes ordered in
exactly the same way as done internally in RAxML at the point in
time where the checkpoint is written. For instance, assume a4 taxon
tree((A,B), (C,D)) and two inner nodesp andq. Then, eitherp
can be assigned as parent of(A,B) or as parent of(C,D) when
the tree is parsed again. However, because of the specifics ofthe
RAxML implementation, if nodep was parent of(A,B) it needs
to be read-in or set-up for that matter as parent of(A,B) again,
such that its is guaranteed that RAxML will produce exactly the
same results when restarted from a checkpoint as a full, complete
run would do.

Another issue to deal with is associated with Amdahl’s law. One
design objective is thus surely to minimize the tree parsingtime
(since we use the fork-join model only the master process will be
parsing the tree) such as to prevent the worker process from waiting
for the master to finish parsing. Hence, ideally, the tree should
somehow be read in directly using a binary format without the
delays associated to actually parsing it.

Related to this, is the checkpointing of branch lengths (64 bit
double precision values) that can not be represented exactly as
strings (with respect to the numerical values) in a typical Newick
tree format.

The solution to this was to directly write the contiguous array
of node data structures (containing branch lengths and correctly
and consistently ordered inner tree nodes) in a binary file. The
only problem is that, the tree data structure is generated bylinking
those node data structures via pointers, hence the stored address
values will be invalid or point to the Nirvana. To solve this,we
also store the starting address of the contiguous array of nodes
in the checkpoint file and then correct all pointer target addresses
by adding/subtracting the offset to the new starting address of the
contiguous node array.

Another issue we had to resolve was how to store hash tables
when the-D option (ML search convergence criterion) is used.
The hash table can become very large (in the 116,000 taxon case)
and always contains the bipartitions of two trees, the one from the
currently best tree and the best tree of the previous iteration of the

search algorithm. Search convergence is assessed by computing the
RF distance between those two trees; the search stops, when the RF
distance is smaller than the admittedly completely arbitrary relative
RF distance of 1%. Since the hash table itself can become verylarge
(bipartitions are stored as bit vectors that have # taxa bits) here we
decided to actually store the two trees (we are only interested in the
topologies here, not the branch lengths or the inner node order) as
Newick strings, parse them, upon restart and insert the respective
non-trivial bipartitions into the hash table.

The -D option was used for all tree searches (and associated
restarts) on the 116,000 taxon dataset.

5 116,000 TAXON TREES
The empirical dataset was constructed with the PHLAWD
tool Smith et al. (2009). As a result of the construction of
this dataset, PHLAWD was extended to allow for PThreads and
OpenMP parallelization for sequence comparisons and multiple
sequence alignments. Ten gene regions were used including 18S,
26S,atpB, ITS, matK, ndhF, phyB, rbcL, rpl16, and thetrnL-trnF
intergenic region. These, concatenated, resulted in a dataset with
116,334 species and 16,079 sites. As discussed in the main text,
the requirement to have more than 100,000 species in the dataset
resulted in the inclusion of some gene regions with more complex
histories in plants (e.g.,phyB) and with less dense sampling. It also
required including 18S and 26S and a large Fungi outgroup. This
resulted in some peculiar biological relationships but served as a
reasonable benchmark.

5.1 Post-Analyses with RAxML and RogueNaRok
The tree collection of 100 ML trees containing 116,000 taxa allowed
us to test the scalability and stability of the post-analysis algorithms
implemented in standard RAxML. More specifically, we testedthe
strict, majority rule, and extended majority rule consensus tree
building algorithms on this tree collection.

We also computed all pair-wise RF distances between the 100
trees.

All of these post-analysis runs could be executed and completed
with the sequential version of RAxML within less than a day ona
single core of one of our 48-core Magny-Cours AMD servers that
are equipped with 256GB RAM.

Finally, we also tested the scalability of our new, efficient
algorithm (Abereret al., 2011) for rogue taxon identification on the
same machine.

While, we need to re-assemble the datasets, the results of our tests
show that, our tools for phylogenetic post-analysis scale to trees
with more than 100,000 taxa.

6 ADDITIONAL MEMORY SAVING STRESS
TESTS, DETAILS, AND TECHNICAL ISSUES

6.1 Combined Performance of Subtree Equality
Vectors and Recomputation Approach

We also tested the stability of combining the Subtree Equality
Vector technique with the recomputation technique on the large
116,000 taxon dataset using a single 48/core node. The results are
summarized in Table 3.

4

TeraByte Phylogenies

Table 3. Execution times of RAxML-Light without
memory saving techniques, with the SEV technique, and
using the SEV as well as the recomputation technique

RAM used Recomputation SEVs execution time

66 GB OFF OFF 29,627 secs
26.5 GB OFF ON 30,373 secs
19.4 GB ON (r := 0.5) ON 40,039 secs

Note that, tree searches were not executed until completion, but
only until the 2nd checkpoint.

Initially we executed the MPI version of RAxML-Light without
any memory saving flags:

raxmlLight-MPI -D -i 25 -s 100K.phy -q 100K.models
-n 100k_mpi48_std
-t RAxML_parsimonyTree.100.0.0 -m GTRCAT

and obtained the following RAxML log file output until killing the
process. Note that, the left column is the execution time in seconds
and the right column is the log likelihood score at this point.

24218.63 -17189331.99
29626.91 -17189305.77

and we measured a memory utilization of 66GB.
Then, we executed RAxML-Light with the Subtree Equality

Vector option enabled:

raxmlLight-MPI -S -D -i 25 -s 100K.phy -q 100K.models
-n 100k_mpi48_std_S
-t RAxML_parsimonyTree.100.0.0 -m GTRCAT

and obtained the following RAxML log file output until killing
the process:

24750.63 -17189331.99
30372.83 -17189305.77

We measured a memory utilization of 26.5GB.
Finally, we also deployed the recomputation option by assigning

only 50% of the required space for ancestral probability vectors
(-r 0.5):

raxmlLight-MPI -S -r 0.5 -D -i 25 -s 100K.phy
-n 100k_mpi48_std_S_r50 -q 100K.models
-t RAxML_parsimonyTree.100.0.0 -m GTRCAT

and obtained the following RAxML log file output until killing
the process:

31740.67 -17189331.99
40039.81 -17189305.77

We measured a memory utilization of 19.4GB. Note that, using
-r 0.5 does not mean that the memory footprint is reduced
by 50% because storing the tip data and allocating the tree data
structure itself requires constant memory (just the input alignment
file size is already 2GB).

6.2 Memory Allocators for Subtree Equality Vectors
A technical issue that we have so far, not assessed is the
impact of frequentmalloc() and free() calls induced by
the Subtree Equality Vector technique (see Izquierdo-Carrasco

Table 4. Execution times of RAxML-Light using
the SEV techniques with standard and multi-threaded
memory allocators

Memory Allocator Used Execution time (seconds)

malloc() 33,430 secs
jemalloc() 18,248 secs

Note that, the program has not been executed to completion.

et al. (2011)). The standard implementations of these functions
use global locks/mutual exclusion mechanisms that can deteriorate
performance.

In these experiments we replaced the standardmalloc() system
call by the dedicated multi-threadedjemalloc() call developed
by Facebook. The results are summarized in Table 4.

On a 48-core node with-S enabled using a gappy, partitioned
dataset with 6 partitions, 33,476 taxa and 8502 sites that represents
a difficult scenario in terms of very frequentmalloc() calls, we
obtained the following RAxML-Light log-file outputs until killing
the processes:

With the standardmalloc() and the following invocation:

raxmlLight-PTHREADS -T 48 -S -s biggeo.phy
-q biggeo.models -m GTRGAMMA
-t RAxML_parsimonyTree.st1.0 -n t48_default

we obtain:

3202.76 -5246558.52
4075.75 -5232593.92
6813.32 -5229403.68
14302.28 -5228344.64
33429.73 -5227982.73

With jemalloc() using

LD_PRELOAD=˜/src/jemalloc-2.2.5/lib/libjemalloc.so

to replace the standardmalloc() calls byjemalloc() and the
following invocation:

raxmlLight-PTHREADS -T 48 -S -s biggeo.phy
-q biggeo.models -m GTRGAMMA
-t RAxML_parsimonyTree.st1.0 -n t48_jemalloc

we obtain:

2200.32 -5246558.52
2673.13 -5232593.92
4125.40 -5229403.68
8073.77 -5228344.64
18248.18 -5227982.73

Hence usingjemalloc() can reduce execution times by almost
a factor of two.

6.3 Computing a TeraByte Tree on a 256GB multi-core
Node

We executed two tests on two distinct (but technically identical)
48-core Magny-Cours nodes with 256GB RAM. We used the MPI
version and 44 as well as all 48 cores of these nodes respectively.
The results are summarized in Table 5.

5

Stamatakis et al

Table 5. Execution times of the MPI version of RAxML-Light with and
without the recomputation technique

RAM used Recomputation # Cores execution time (3rd checkpoint)

≈ 1TB OFF 672 25,852 secs
200 GB ON (r := 0.15) 44 180,915 secs
220 GB ON (r := 0.2) 48 163,896 secs

Note that, tree searches were not executed until completion, but only until the 3rd
checkpoint.

We did not execute the runs to completion, but just checked that
(i) they do not crash and (ii) they yield the same initial log likelihood
scores (printed to theRAxML_log.RUN_ID file) as the reference
run on 672 cores that does not use the recomputation technique.

Below, we provide the log file (left column: seconds of execution
time, right column: log likelihood score) output of the 672-core run:

20457.97 -5924736430.47
21726.20 -5923054260.35
25851.57 -5923014209.68
37801.40 -5923013987.09
42838.57 -5922998983.27
45021.71 -5922998812.28
46478.81 -5922998783.15
47825.58 -5922998780.54
49117.08 -5922998775.48
50412.50 -5922998591.07
51678.61 -5922998585.29
52970.79 -5922998528.06
56629.70 -5922998515.88
66129.46 -5922605907.38
72415.82 -5922605894.28
78060.29 -5922605894.03
83679.40 -5922605894.03
89951.23 -5922605894.03
105603.20 -5922605894.03
142563.40 -5922605894.03

We then executed RAxML-Light using 44 out of 48 cores with
OpenMPI and a memory reduction factor of 0.15 (-r 0.15) as
follows:

raxmlLight-MPI -r 0.15 -m GTRCAT -G 1481.phy.binary_new
-t RAxML_parsimonyTree.1481 -n TEST_1481_015_44

and measured a memory consumption of approximately 200GB.
A rough extrapolation of the expected run time until convergence on
just one instead of 14 nodes yields an approximate run-time of 11.5
days.

The RAxML log file outputs until we killed the process were the
following:

105005.91 -5924736430.47
121651.50 -5923054260.35
180914.96 -5923014209.68

We repeated the experiment on one of our 256GB cluster nodes
using all 48 cores with-r 0.2 , i.e., just allocating 20% of the total
space that would be required to hold all ancestral probability vectors
in RAM:

We executed RAxML-Light as follows:

raxmlLight-MPI -r 0.2 -m GTRCAT -G 1481.phy.binary_new
-t RAxML_parsimonyTree.1481 -n TEST_1481_020_48

and measured a memory consumption of 220GB.
The RAxML log file outputs until we killed the process were the

following:

95774.88 -5924736430.47
110764.99 -5923054260.35
163896.06 -5923014209.68
326000.29 -5923013987.09
379180.49 -5922998983.27
402798.86 -5922998812.28
418582.81 -5922998783.15
432932.63 -5922998780.54

In this case, a rough extrapolation of execution times with respect
to the 672-core run yields an expected run time of about 14 days.

7 TEST DATA USED
The test data used here is available for download at
http://www.exelixis-lab.org/onLineMaterial.tar.bz2 .

The archive contains all datasets and required input files for
reproducing our results, except for the three datasets usedin this
supplement (ALL.aln , 54_962787.phy , biggeo.phy) to
assess performance impact of alternative thread-to-core pinnings
and of using jemalloc() . Those datasets are currently
unpublished and therefore not available (yet) for public release.
However, similar simulated datasets were made available for the
following paper Zhang & Stamatakis (2012). The impact of using
jemalloc() can also be tested with the huge and gappy 116,0000
taxon dataset.

ACKNOWLEDGEMENT
Funding: Part of this work is funded by the DFG grant STA-860/3
and by the NSF iPlant tree of life grand challenge project.

REFERENCES
Aberer, A., Krompass, D. & Stamatakis, A. (2011). RogueNaRok: an Efficient and

Exact Algorithm for Rogue Taxon Identification. Technical Report Exelixis-RRDR-
2011-10 Heidelberg Institute for Theoretical Studies.

Izquierdo-Carrasco, F., Smith, S. & Stamatakis, A. (2011) Algorithms, data structures,
and numerics for likelihood-based phylogenetic inferenceof huge trees. BMC
Bioinformatics, 12 (1), 470.

Klug, T., Ott, M., Weidendorfer, J. & Trinitis, C. (2011) autopin–automated
optimization of thread-to-core pinning on multicore systems. Transactions on
high-performance embedded architectures and compilers III, , 219–235.

Ott, M., Zola, J., Aluru, S. & Stamatakis, A. (2007) Large-scale Maximum Likelihood-
based Phylogenetic Analysis on the IBM BlueGene/L. InProc. of IEEE/ACM
Supercomputing Conference 2007 (SC2007).

Smith, S., Beaulieu, J. & Donoghue, M. (2009) Mega-phylogeny approach for
comparative biology: an alternative to supertree and supermatrix approaches.BMC
Evolutionary Biology, 9 (1), 37.

Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models.Bioinformatics, 22 (21),
2688–2690.

Stamatakis, A., Ludwig, T. & Meier, H. (2005) RAxML-III: A Fast Program for
Maximum Likelihood-based Inference of Large PhylogeneticTrees.Bioinformatics,
21(4), 456–463.

Stamatakis, A. & Ott, M. (2008) Efficient computation of the phylogenetic likelihood
function on multi-gene alignments and multi-core architectures. Philosophical
Transactions of the Royal Society B: Biological Sciences, 363 (1512), 3977–3984.

Zhang, J. & Stamatakis, A. (2012). The Multi-Processor Scheduling Problem in
Phylogenetics. Technical report Heidelberg Institute forTheoretical Studies.

6

