PaPaRa 2.0: A Vectorized Algorithm for
Probabilistic Phylogeny-Aware Alignment
Extension

Simon A. Berger and Alexandros Stamatakis

The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical
Studies,
Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
simon.berger@h-its.org;alexandros.stamatakis@h-its.org

Abstract. We present a significantly improved version of our phylogeny-
aware alignment extension algorithm PaPaRa for aligning short sequence
reads with respect to a given multiple sequence alignment and a corre-
sponding phylogenetic reference tree.

This procedure constitutes a pre-processing step for computing the dis-
tribution of short sequence reads on a given reference phylogeny and
full-length sequence alignment using maximum likelihood-based phylo-
genetic placement methods such as EPA or pplacer.

Our algorithm now deploys a novel probabilistic method to more accu-
rately extract, model, and use the indel (insertion/deletion) pattern in-
duced by the multiple reference alignment and corresponding phylogeny.
This new approach improves the accuracy of subsequent phylogenetic
placements by a factor of two. Also, placement accuracy is now con-
sistently better than for alignments obtained with phylogeny-agnostic
methods such as HMMALIGN.

Moreover, we obtained up to 15-fold run time improvements by deploying
SIMD (Single Instruction Multiple Data) vector intrinsics to accelerate
the alignment kernel.

1 Background

We recently introduced PaPaRa [2] (in the following we refer to the original
algorithm as PaPaRa 1.0), a novel method for aligning short sequence reads
(query sequences; QS) to an existing reference multiple sequence alignment (RA)
and a corresponding phylogenetic reference tree (RT). This algorithm consti-
tutes a pre-processing step for identifying short, anonymous DNA reads (e.g.,
as obtained from metagenomic samples) based upon a set of known reference
organisms/sequences. New sequencing technologies can generate up to several
millions of of such short DNA reads with a length ranging between 30 to 450
nucleotides [8]. The large number of reads that can be obtained at low cost al-
lows for using these next-generation sequencing methods for in-vivo sampling of
microbial communities (e.g., in the human gut [16] or on human hands [6]). For
phylogenetic and statistical analyses of the diversity in metagenomic samples,

new likelihood-based methods such as the Evolutionary Placement Algorithm
(EPA) [1,15] and pplacer [12] have recently become available. These new place-
ment algorithms help to establish the provenance of the anonymous and diverse
environmental sample of short reads by means of assigning the reads to a given
—fixed— RT. The reference phylogeny is a fully resolved (strictly bifurcating)
unrooted phylogenetic tree that is based on the fixed RA of the full length se-
quences in the RT.

Phylogenetic placement algorithms like EPA or pplacer work by inserting
(and removing again) one short read at a time into different edges (branches)
of the RT. Thereby, they strive to find the optimal likelihood score of the ex-
tended (by one taxon) trees in order to individually and independently determine
the best insertion edge (branch) for each read. Evidently, the accuracy of such
likelihood-based placements of reads depends on the extended multiple sequence
alignment, that entails the RA and the QS. Prior to the recent introduction of
dedicated QS alignment methods, one could align QS with a RA (containing full
length reference sequences) by computing a new multiple sequence alignment
(MSA) from scratch based on all sequences (RA and QS) using MAFFT [9] or
PRANK, r [11] for instance. Because of the extremely large and continuously
growing number of QS, this de-novo alignment approach becomes computation-
ally prohibitive. Alternatively, one can keep the existing (potentially manually
curated) RA unchanged, and only align the QS with respect to this RA, using
dedicated QS alignment methods. One such method for aligning QS with respect
to a RA is implemented in the HMMER (3] tool-suite. The program HMMA-
LIGN can be used to align QS against a profile Hidden Markov Model (HMM)
that is derived from the RA. The profile-HMM is a monolithic representation of
the RA, which does not use the evolutionary information encoded in the RT.

We previously demonstrated, that PaPaRa 1.0 increases the accuracy of sub-
sequent EPA placement runs compared to using HMMALIGN. The abstract
alignment procedure of PaPaRa 2.0 does not differ significantly from the origi-
nal implementation. The algorithm derives a set of ancestral state (AS) vectors
[2] using the RA and RT. Each AS vector represents a hypothetical common
ancestor of the taxa in the RT. Given a RA and RT that contains r taxa, one
AS is generated for each of the 2r — 3 edges in the RT. The AS vectors in Pa-
PaRa 1.0 consisted of two components: (i) the ancestral sequence profile, which
is derived from the parsimony state-vectors [7,14] at each end of the edge; (ii)
a tree-derived gap-signal represented as a set of binary flags that are generated
along with the parsimony state-vectors using a set of empirical rules (see [2] for
details).

The general PaPaRa algorithm has two phases: Initially, the alignment scores
for aligning all QS against all AS are calculated. For each QS, the algorithm keeps
track of the respective best-scoring AS. This phase is computationally intensive
because it requires O(nr) pairwise alignments on a data set with n QS. In the
second phase, the algorithm then creates the actual pairwise alignments for each
best-scoring QS/AS pair, and writes the original RA and the aligned QS to a
PHYLIP-formatted file. The underlying idea is to decompose the RA into two

components: (i) a standard DNA alignment to which we apply standard ML and
parsimony methods and (ii) a corresponding binary alignment that reflects the
gap/non-gap (indel) structure of the alignment at hand. The latter is used to
compute the respective gap probabilities using a two-state likelihood model in
PaPaRa 2.0.

Te reminder of this paper is organized as follows: In Section 2 we provide
an overview of the algorithmic (accuracy improvement) and technical (run-time
improvement) innovations in PaPaRa 2.0. In Section 3 we conduct a detailed
experimental study to assess the impact of the above algorithmic and technical
innovations. We conclude in Section 4.

2 Improvements over the Original Implementation

The new implementation improves upon PaPaRa 1.0 by algorithmic as well as
technical innovations. The algorithmic changes improve upon alignment accu-
racy, while the technical changes substantially improve run-time performance.

At the algorithmic level, we introduced a new, less ad hoc, method to derive
the gap signal from the RT and RA, based on a probabilistic model, rather than
a set of empirical rules (see [2]). Furthermore, we fundamentally improve the
alignment scoring scheme by introducing versatile handling of freeshift gaps. We
have now also added the capability to optionally insert gaps into the reference
alignment instead of deleting insertions from the QS.

At the technical level, we use a new SSE-based SIMD vectorization, which
can speed up the computational kernel of PaPaRa by a factor of 15.

2.1 Probabilistic Gap Model

Methodologically, the new gap model, represents the most substantial change in
PaPaRa 2.0. Originally, PaPaRa 1.0 derived a set of gap-flags (OPEN/CGAP)
for each site in the ancestral state vectors. The purpose of these flags was to
keep track of those sites in the ancestral state vectors that were likely to contain
a gap. The gap-flags were calculated along with the ancestral sequence profile
according to a set of simple empirical rules [2]. For positions that contained a
gap according to these rules, the scoring scheme of the dynamic programming
algorithm in PaPaRa was modified, such that, matches were penalized and gap
insertions in the QS were favored.

In PaPaRa 2.0 we introduce a probabilistic scheme to model gaps (indels).
Here, the AS vectors of each node = are augmented by a set of two probability
vectors L(()w) and ng), which contain the respective probabilities of observing a
non-gap or a gap character for each site of the AS. The number of entries in
the two gap probability vectors corresponds to the number of columns (sites)
in the RA. For the terminal (leaf) nodes of the RT, the values in Lém) and ng)
are initialized according to the sequence of the corresponding taxon in the RA.

For non-gap characters, the elements in L(()w) and Lgx) are set to 1.0 and 0.0
respectively. For gap characters, they are set to 0.0 and 1.0. For an inner node

p in the RT, the probability vectors are derived from the two child nodes ¢;
and co according to a simple time-reversible likelihood model that is computed
recursively with the Felsenstein pruning algorithm [5]. Our model uses a set of
transition probabilities P;;(t), where ¢ and j take values 0 and 1 for the non-gap
and gap cases. Each P;; is the probability of a state ¢ transforming into j within
time ¢ (e.g., Pp1(0.1) is the probability of a non-gap character turning into a
gap in time 0.1). The edge values t are fixed and correspond to the edge lengths
in the RT that are estimated using the nucleotide data and standard likelihood
model. The transition probability matrix for time ¢ is obtained by P(t) = e®@?,
where @) is the instantaneous transition rate matrix, that is initialized by the
prior probabilities Tnon-gap, Teap Of Observing non-gap/gap characters in the RA
(for more details about this binary model, see [10]):

Q= “Tgap Tgap
Tnon-gap — TTnon-gap

As described in [5], the probability vectors of a parent node p are calculated
from the probability vectors of child nodes ¢; and ¢y and the respective edge
lengths t; and t5 according to

L= > Pult)L > Pult)Ly

1€{0,1} j€{0,1}

As mentioned above, PaPaRa 2.0 works by aligning QS against AS vectors
that represent the edges in the RT. The corresponding gap probability vectors

of an AS are generated by inserting a temporary virtual root node x in the

center of the edge under consideration. The corresponding L(()m) and ng) are

then calculated according to the above equation.

The gap probability vectors are not directly used in the dynamic program-
ming algorithm. Instead of directly modulating the scoring scheme with the
gap/non-gap probabilities, we derive a single binary gap-flag per site. The flag
at a site is set, if the probability of observing a non-gap character (Léz)) at
that site is smaller than the probability of observing a gap character (L@).
Thereby, the integration of the gap signal into the scoring scheme is very sim-
ilar to PaPaRa 1.0 (see eq.l in the next section). The main difference is that,
the gap-flag is no longer derived according to some empirical rules, but using
a probabilistic model. There are two main arguments in favor of ’compressing’
the gap probabilities into a binary flag rather than using them directly in the
alignment scoring scheme. Firstly, the overall scoring scheme of the alignment
algorithm is not based on probabilities, but on empirical values. Thus, we do
not see an intuitive approach for directly integrating the gap-probabilities with
this ad hoc empirical scoring scheme. Nonetheless, we carried out tests that di-
rectly use the gap probabilities to modulate the scoring scheme. However, this
approach performed worse with respect to accuracy (results not shown) than
the simple flag-based method described here. Secondly, from a run-time perfor-
mance point of view, using the gap probabilities directly, would require using

floating point arithmetic in the score calculations, which are generally slower
than integer arithmetic (e.g., on current Intel CPUs throughput of most integer
instructions is twice as high as for their corresponding floating point instruc-
tions; see http://www.agner.org/optimize/instruction_tables.pdf). Using 16-bit
integers for calculating and storing alignment scores also allows for a more efli-
cient SIMD vectorization than, for instance using 32-bit single precision floating
point values (see Section 2.4).

2.2 Unified Use of Freeshift Gaps

Previously, PaPaRa 1.0 used distinct approaches for penalizing gaps in the QS
and in the RA (i.e., deletions and insertions). Gaps in the QS (deletions) were pe-
nalized using affine gap penalties, that is, there are distinct penalties for opening
and extending gaps. Gaps on either ends of the QS were not penalized (freeshift
gaps). The rationale for using the freeshift penalty is, that the QS are short
compared to the RA and are expected to be fully contained within the genomic
region (e.g., a single 16S gene) covered by the RA. Thus, gaps on the RA side (in-
sertions) were treated with a constant gap extension penalty, and gaps on either
side of the RA were not free. When gaps are added to either ends of the RA, this
effectively means that the QS which emits this gap, is not fully contained within
the genomic region of the RA. While we initially assumed that this would not
occur, in practice, this assumption turned out to be overly restrictive in some
real use cases. Therefore, we extended PaPaRa 2.0 to also allow for freeshift gaps
on either side of the RA. Thereby, QS that do not entirely fit within the RA are
allowed to experience an unpenalized hangover at the boundaries of the RA. We
further modified the scoring scheme, such that gaps inserted into the RA are
also treated with affine gap penalties. The respective recursive formula for the
dynamic programming alignment of an AS A and a QS B is given by equation 1:

oG- —3 if GAP-flag is set for site ¢
o otherwise

(GPo,GPg) = (—3,-1)

. . P, P, if CG* =
(GPY, GPy) = { (GF0 GPs) 1HCGT=0
(0,0) otherwise

i — 2 if AfandB/match
0 otherwise
H%~' 4+ GPs + GPg

HY = max i
! { Hy' '+ GPg

i g H=% + GP} + GPj
7 =max Zj P M
HiY 4GP

Hi—l,j—l +Si,j +CG1
H" = maz HY (1)
HyY
The basic structure of the scoring method is similar to the original one de-
scribed in [2]. The original paper also gives the definition of a match between
A and BJ. The main difference is the term H; that accommodates affine gap
penalties for insertions (i.e., gaps in the RA), which were previously only al-
lowed for deletions (i.e., gaps in the QS). A more subtle difference is that, for
the insertion score calculation (Hy) we now use the fixed gap-open/gap-extension
penalties GPy and G Pg, whereas for deletions (Hg) we use the scores as mod-
ulated by the site-specific gap-flags (GP}, and GP};). Finally, we transformed
the score minimization used in PaPaRa 1.0 to a maximization, such that match
scores are positive values, while gap penalties correspond to negative values (i.e.,
we maximize the score). Using positive values for matches and negative values
for mismatches simply yields the scoring scheme more intuitive and easier to
interpret.

2.3 Inserting Gaps into the Reference Alignment

To extend the applicability beyond downstream analyses using phylogenetic
placement methods (EPA, pplacer), PaPaRa 2.0 also offers an option to in-
sert gaps into the RA instead of deleting insertion characters from the QS. This
allows for preserving the complete sequence information of a QS. However, based
on the underlying PaPaRa principle, we still align only one QS at a time against
the RA and RT. In other words, if two or more QS insert gaps into the RA at the
same position, these gaps have to be merged. The merging procedure currently
does not aim to correctly align QS characters with respect to each other within
the RA gaps (see figure 1). The result of this merging procedure resembles a
full multiple sequence alignment consisting of the previous RA and the newly
inserted QS. Due to the simplistic nature of the merging procedure, QS charac-
ters which are aligned against a gap in the RA (e.g., the QS part highlighted by
the gray box in Figure 1) should not be interpreted as being correctly aligned,
even if they appear as aligned characters in the output file. When the resulting
MSA is used with the EPA, the parts of the QS which are aligned against gaps
in the RA will not contribute to the likelihood signal, since gaps are treated as
missing data in all standard maximum likelihood implementations. Because of
this mathematical property, the QS characters inside these RA gaps are sim-
ply ’ignored’ by the EPA. When a PaPaRa alignment is used for downstream
analysis with the EPA or pplacer, we therefore suggest to switch off the RA gap
insertion feature.

2.4 SIMD Vectorization

As described in [2] the PaPaRa algorithm exhibits a high degree of parallelism,
because a—typically—large number of independent pair-wise QS and AS align-
ment calculations need to be performed (for n QS and a RT with m taxa, the

[]
[]

[] \ - - | \ N —
[] - -

[] \ -~ \ [)|]

ACGTAGCTAGTAGCATGCGATC ACGTAGCTAGTCCT AGCATGCGATC ACGTAGCTAGT GAGCATGCGATC

T

ACGTAGCTAGT}= = = AGCATGCGATC
ACGTAGCTAGTCCT AGCATGCGATC
ACGTAGCTAGTG==AGCATGCGATC

Fig. 1. Merging overlapping gaps introduced to the RA by different QS

number of independent pair-wise alignments is O(nm)). In PaPaRa 1.0 we de-
ployed multi-threading to exploit this coarse-grain parallelism, obtaining good
speedups on multi-core architectures. In addition to offering multiple cores, most
modern processors also offer SIMD instructions (most commonly SSE on Intel
and AMD CPUs) which can be used to exploit data-parallelism at a more fine-
grained level.

Using SIMD instructions to accelerate dynamic programming algorithms
(e.g., the smith-waterman algorithm), has been extensively studied. See [4][13]
for reviews of previous work. Generally, the techniques to exploit SIMD par-
allelism in pair-wise sequence alignment can be categorized into intra-sequence
and inter-sequence approaches. Intra-sequence approaches accelerate the align-
ment of a single sequence pair (e.g., the swps3 program [4]). The main drawback
of this approach is that, when vectorizing the calculation of a single dynamic-
programming matrix one has to rely on exploiting wave-front parallelism which
limits the degree of parallelism that can be achieved. In contrast to this, inter-
sequence vectorization approaches conduct multiple alignments (compute mul-
tiple matrices) with a single vector instruction. This is typically achieved by
aligning a single sequence against multiple (usually 4, 8, or 16) other sequences
at a time. In other words, instead of calculating a single matrix cell H/ € Z
per step/instruction, SIMD operations are used to calculate multiple matrix
cells H" € ZY, where w is the vector width of the SIMD instructions. The
intra-sequence method is particularly efficient if a large number of pair-wise
all-against-all alignments need to be conducted, as is the case with PaPaRa.

The actual value w depends on the data type used for the score calculation.
In PaPaRa 2.0 we use either 16 bit (DNA data) and 32 bit (protein data) integers
with corresponding vector widths of 8 and 4 (i.e., 8x16bit and 4x32bit vectors)
respectively. The reason for using different integer types and thus vector widths
is that, for greater efficiency, we also use the same data types to store scores as
well as the elements of the ancestral state vectors. For protein data, the ancestral
state vectors require 20 bits per site, and therefore need to be stored in 32 bit
integer values, which correspond to a vector width of 4. For DNA data there
are only 4 bits per ancestral state vector site, which can be stored in a 16 bit

integer. In this case we also use 16 bit values in the alignment scoring algorithm.
For the typically short QS, numeric overflow of these 16-bit integers is currently
not an issue.

The vectorized implementation is analogous to the corresponding sequential
dynamic programming implementation (Equation 1). The main difference is that,
for vector data one can not directly use the standard C++ data types (PaPaRa
2.0 is implemented in C++) and arithmetic operators. Instead, one has to use
vector intrinsics. For Intel SSE3 intrinsics, for instance, the __m128i data type
can either be interpreted as a vector of 8x16bit or 4x32bit integers. It replaces
the short and int data-types and the intrinsic vector operation _mm_add_epil6
is used instead of the + operator. Corresponding intrinsic functions exist for most
of the built-in C/C++ data types and arithmetic operations, which yields inter-
sequence vectorization relatively straight-forward.

To further improve performance, the vectorized implementation does not
keep the whole dynamic-programming matrix in memory. This is because, stor-
ing the entire matrix only becomes necessary if the actual alignment shall be
generated in the trace-back step. In PaPaRa 2.0 the vectorized algorithm is only
used for initial all-against-all score calculations because this step largely dom-
inates execution times. It is therefore sufficient to only store one row of the
matrix at a time (see Equation 1: the values in matrix row j only depend on
values from rows j and j — 1. This allows our implementation to overwrite the
matrix values from row j — 1 directly with the newly calculated values in row j).
To further increase the cache efficiency of the aligner, we carry out matrix score
calculations in a block-based scheme: Instead of calculating the matrix values for
an entire row at a time (Figure 2a), only a subset (block) of B columns/entries
are calculated (Figure 2b). The block size B defines how many values of the
previous matrix row need to be accessed, and is set (depending on the cache
size) such as to maintain the referenced values in the L1 cache at all times. The
rightmost column of each block is stored and used as starting value for the next
block (Figure 2b; columns highlighted in red). An earlier SIMD implementation
without this block-based optimization yielded a substantial slowdown when the
RA exceeded a certain length (results not shown). The blocking optimization
alleviates this limitation.

a) b)

—

£ AN

7
P— e —

E T

- [N

Fig. 2. The order of matrix cell calculations in a standard (a) and block-based (b) inter-
sequence dynamic programming implementation. The block-based approach increases
data access locality and thereby cache efficiency.

3 Accuracy and Run-Time Performance

3.1 Placement Accuracy

Table 1 provides an accuracy evaluation of PaPaRa 2.0 compared to PaPaRa 1.0
and HMMALIGN (the accuracy values for PaPaRa and HMMALIGN are iden-
tical to the results published in [2]). The number in the respective data set name
denotes the number of taxa in the respective data set. We restrict our evaluation
to the harder case of short QS of length 100+ 10bp. As in the original evaluation,
we provide results for 4 different multiple sequence reference alignments per data
set (ORIG, MUSCLE, MAFFT and PRANK, r). The measure for quantifying
alignment accuracy is exactly the same as in the original evaluation. The val-
ues in Table 1 correspond to the RT-based mean distance between the ’true’
reference EPA placement and the respective EPA placement after re-alignments
with PaPaRa 1.0, PaPaRa 2.0, and HMMALIGN. For a detailed description of
the data sets, the method for generating the short QS, and the full evaluation
procedure please refer to [2] where we also describe the two distance measures
(node-dist (ND) and normalized edge distance (NED%)). The ND represents an
absolute distance measure, which does not incorporate the edge lengths of the
phylogenetic tree, while the NED% is a relative measure, which normalizes the
insertion distance (patristic distance between the calculated and ’true’ insertion
position) by the corresponding worst-case distance (maximum error) for each
placement.

On most data sets PaPaRa 2.0 outperforms PaPaRa 1.0 as well as HMMA-
LIGN. On the largest data set (D1604) and the original alignment (ORIG),
the EPA places the PaPaRa 2.0 aligned QS within 0.23 nodes of the reference
placement, while for PaPaRa 1.0 and HMMALIGN the distances are 0.28 and
1.31 respectively. On the MUSCLE and MAFFT generated RAs, the perfor-
mance improvements are similar, while on the PRANK, r aligned RA, PaPaRa
2.0 performs slightly worse than the earlier version (ND 0.44 compared to ND
0.41). However, with respect to the NED% measure, PaPaRa 2.0 consistently
outperforms PaPaRa 1.0 as well as HMMALIGN. More importantly, PaPaRa 2.0
no longer shows the comparably large discrepancy between the ND and NED%
measure on this data set [2]. On the remaining data sets (except for D628) Pa-
PaRa 2.0 outperforms version 1.0. In contrast to version 1.0 it also consistently
outperforms HMMALIGN under both accuracy measures.

3.2 Run-time Performance

To assess the run-time performance of PaPaRa 2.0, we repeated the performance
evaluation from [2] where we reported the overall program run times of PaPaRa
1.0 and HMMALIGN on the smallest (D150) and largest (D1604) data set.
In contrast to the accuracy evaluation above, the run-time tests are based on
1500 (D150) and 16040 (D1604) QS with lengths 200 + 60 bp. We used these
QS lengths to obtain comparable run times as in the original evaluation. For our
experiments we used the same Intel core i5-750 CPU as in the original evaluation,

10

Table 1. Placement accuracy for the three QS alignment methods under consideration.
Results are given using the node-distance (ND) and normalized edge distance (NED%)
measures.

ND NED%

Data Set PaPaRa PaPaRa 2.0 HMM |PaPaRa PaPaRa 2.0 HMM
ORIG 0.52 0.25 131 | 1.74% 1.02% 1.68%

2 MUSCLE | 0.57 0.27 1.18 | 2% 0.99% 1.51%
Q MAFFT | 0.58 0.30 1.29 | 1.69% 1.02% 1.49%
PRANK,r| 0.7 0.43 21 | 1.88% 0.91% 2.89%
ORIG 2.02 1.12 1.78 [6.57% 3.62% 5.8%

g MUSCLE | 1.95 1.12 1.73 | 7.63% 4.34% 6.25%
A MAFFT | 1.86 1.13 1.92 | 6.21% 3.73% 6.14%
PRANK,r| 2.04 1.19 203 | 7.18% 4.02% 6.86%
ORIG 0.57 0.32 059 | 1.64% 0.88% 1.65%

§ MUSCLE | 0.6 0.28 0.68 | 1.711% 0.80% 1.91%
Q MAFFT | 0.62 0.29 0.69 | 1.74% 0.88% 1.91%
PRANK,r| 0.68 0.35 0.81 | 1.88% 0.96% 2.22%
ORIG 0.8 0.77 1.9 | 207% 1.85% 3.80%
§MUSCLE 1.09 1.92 3.75 | 2.81% 5.15% 9.38%
& MAFFT | 0.47 0.55 278 11.11% 1.13% 5%
PRANK, x| 0.5 0.58 3.32 | 1.14% 1.05% 5.61%
ORIG 0.55 0.37 054 | 1.71% 0.94% 1.28%

g MUSCLE | 0.5 0.33 0.86 | 1.4% 0.74% 1.4%
Q MAFFT | 0.45 0.26 0.75 | 1.58% 0.69% 1.55%
PRANK, | 0.51 0.30 1.28 | 1.47% 0.59% 2.48%
ORIG 0.59 0.53 132 1.03% 0.63% 1.67%

g MUSCLE | 0.67 0.44 1.54 | 1.22% 0.71% 2.32%
Q MAFFT | 0.66 0.58 1.03 | 1.11% 0.81% 1.5%
PRANK,r| 0.8 0.61 228 | 1.47% 0.97% 3.57%
- ORIG 0.28 0.23 1.35 | 0.71% 0.37% 1.35%
2 MUSCLE | 0.43 0.38 1.35 | 0.87% 0.50% 1.48%
A MAFFT | 0.29 0.21 1.21 | 0.72% 0.37% 1.29%
PRANK, | 0.41 0.44 243 | 0.95% 0.58% 2.41%

with a more recent gcc version (4.6.2). All measurements were carried out using
a single CPU core.

For PaPaRa 2.0, the overall program run times range between 27s (D150)
and 2590s (D1604). The corresponding run times with the other methods are
345s-39746s (PaPaRa 1.0) and 61s-1030s (HMMALIGN). Note that, the values
reported for PaPaRa 1.0 are approximately 10% lower than in [2], while the
times for HMMALIGN remain almost constant. We assume that the run time
differences are mainly caused by the newer gcc version (presumably the naive
implementation of the alignment core in PaPaRa 1.0 gives the newer gcc version
more room for optimization than the well-tuned HMMALIGN kernel). Generally,
PaPaRa 2.0 is 12-15 times faster than PaPaRa 1.0 on these data sets. For data
sets in this size range, the run time of PaPaRa 2.0 is in the same order of

11

magnitude as HMMALIGN. For larger data sets (in terms of taxa contained
in the RA), the program run time of PaPaRa 2.0 increases at a higher rate
than for HMMALIGN. Evidently, this is because of the considerably higher time
complexity of PaPaRa (both versions) compared to HMMALIGN [2].

The speedup of more than a factor of 12 for the vectorized PaPaRa 2.0 code
is larger than expected, given that the SIMD vector width is only 8. Also the
alignment kernel of PaPaRa 2.0 is slightly more complex than that of PaPaRa
1.0, because of the affine gap penalties on the RA side, which introduce an ad-
ditional maximization as well as additions for calculating the H;”’ values. The
unexpectedly large performance gain is most likely due to the revised implemen-
tation of the maximization operation and conditional statements of Equation 1.
The vectorized implementation deploys a specialized maximization operation
(e.g., _mm_max_epil6) and bit masks, while PaPaRa 1.0 used explicit branches
(i.e., if/else). As a result, the inner loop of the vectorized implementation is
very compact and, more importantly, contains no conditional jumps.

4 Conclusion and Future Work

We have presented PaPaRa 2.0, an substantially improved and accelerated ver-
sion of the original proof-of-concept software. The source code of the algorithm is
available at http://exelixis-lab.org/software.html. The new version requires less
empirical ad hoc rules for extracting information about the indel distribution
in the RA by replacing them with a more straight-forward statistical model.
This improvement, combined with a better-tuned set of remaining ad hoc align-
ment scoring parameters improves the overall alignment quality on the data-
sets used for assessing PaPaRa 1.0. While the new algorithm performs slightly
worse than PaPaRa 1.0 on a small number of data sets, it now consistently
outperforms HMMALIGN. Performance-wise, the slightly more complex scoring
scheme of PaPaRa 2.0 is more than alleviated by the new vectorized alignment
core. Despite its high time complexity, PaPaRa 2.0 scales well to large data
sets. PaPaRa 2.0 can also deploy multiple threads on multi-core systems. We
recently ported the alignment kernel of PaPaRa 1.0 to general purpose graphics
processing units (GPUs) using OpenCL. By combining the GPU implementa-
tion with a vectorized and multi-threaded CPU implementation, we designed a
hybrid GPU/CPU system. On a typical desktop system with an Intel core i7-
2600 CPU (4 cores) and a NVidia GTX560 GPU, the hybrid approach increases
the maximum performance (in terms of cell updates per second) by a factor of
2.4 over the stand-alone vectorized CPU version (technical report available at
http://www.exelixis-lab.org/rrdr2012-1.php).

As a more fundamental future improvement, we plan to explore methods
that rely on a purely probabilistic representation of the ancestral sequence pro-
files. The probabilistic gap-signal in PaPaRa 2.0 shows that such a probabilistic
representation can increase accuracy. Most importantly, this would allow for re-
moving the ad hoc scoring parameters and potentially yield the algorithm more
adaptive to different data sets without any need for parameter tuning. Natu-

12

rally, the current default parameters in PaPaRa may be biased towards good
performance on small subunit rRNA data, which is most abundant among our
collection of test data sets. In the tradition of BLAST and other widely used
alignment programs, the scoring parameters are user-defined parameters, which
can and should be tuned for the application and dataset at hand. Nonetheless,
designing a parameter-free, adaptive alignment extension tool represents a de-
sirable research goal to strive for.

References

10.

11.

12.

13.

14.

15.

16.

Berger, S.A., , Krompass, D., Stamatakis, A.: Performance, accuracy and web-
server for evolutionary placement of short sequence reads under maximum-
likelihood. Syst. Biol. 60(3), 291-302 (2011)

Berger, S.A., Stamatakis, A.: Aligning short Reads to Reference Alignments and
Trees. Bioinformatics (Oxford, England) 27(15), 2068-2075 (2011)

Eddy, S.: Profile hidden Markov models. Bioinformatics 14(9), 755-763 (1998)
Farrar, M.: Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics 23(2), 156-161 (2007)

Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17, 368-376 (1981)

Fierer, N., Hamady, M., Lauber, C., Knight, R.: The influence of sex, handedness,
and washing on the diversity of hand surface bacteria. Proceedings of the National
Academy of Sciences 105(46), 17994 (2008)

Fitch, W., Margoliash, E.: Construction of phylogenetic trees. Science 155(3760),
279-284 (1967)

Karow, J.: Survey: Ilumina, solid, and 454 gain ground in re-
search labs; most users mull additional purchases (Jan 2010),
http://www.genomeweb.com/sequencing/survey-illumina-solid-and-454-gain-
ground-research-labs-most-users-mull-addition

Katoh, K., Kuma, K., Toh, H., Miyata, T.: MAFFT version 5: improvement in
accuracy of multiple sequence alignment. Nucl. Acids Res. 33, 511-518 (2005)
Lewis, P.: A likelihood approach to estimating phylogeny from discrete morpho-
logical character data. Systematic Biology 50(6), 913-925 (2001)

Loytynoja, A., Goldman, N.: Phylogeny-aware gap placement prevents errors in
sequence alignment and evolutionary analysis. Science 320(5883), 1632 (2008)
Matsen, F., Kodner, R., Armbrust, E.V.: pplacer: linear time maximum-likelihood
and bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC
Bioinformatics 11(1), 538 (2010)

Rognes, T.: Faster smith-waterman database searches with inter-sequence simd
parallelisation. BMC Bioinformatics 12(1), 221 (2011)

Sankoff, D.: Minimal mutation trees of sequences. SIAM. J. Appl. Math. 28, 35-42
(1975)

Stark, M., Berger, S.A., Stamatakis, A., von Mering, C.: MLTreeMap - accurate
Maximum Likelihood placement of environmental DNA sequences into taxonomic
and functional reference phylogenies. BMC Genomics 11(1), 461+ (August 2010)
Turnbaugh, P., Hamady, M., Yatsunenko, T., Cantarel, B., Duncan, A., Ley, R.,
Sogin, M., Jones, W., Roe, B., Affourtit, J., et al.: A core gut microbiome in obese
and lean twins. Nature 457(7228), 480-484 (2008)

