
An improvement to DPPDIV

Tomáš Flouri1 and Alexandros Stamatakis1,2

1 Heidelberg Institute for Theoretical Studies, Germany
2 Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Postfach 6980, 76128

Karlsruhe

1 Introduction

DPPDIV [3] is a program for estimating species divergence times and lineage-specific substitution
rates on a fixed topology. The prior on branch rates is a Dirichlet process prior (DPP) which
clusters branches into distinct rate classes. Alternative priors including the global molecular clock
and the independent rates model are also available. The priors on node ages include the birth-death
(and Yule) model and the uniform distribution. The likelihood is calculated using the sum product
algorithm [2, 1]. Markov chain Monte Carlo (MCMC) sampling is used to approximate the posterior
distributions of the various parameters and hyperparameters and to obtain estimates of brach rates
and divergence times. The proposal mechanism for updating the lineage-specific substitution rates
under the DPP is Algorithm 8 described by [5] and implemented in other phylogenetic methods
employing this prior [4]. This approach uses Gibbs sampling to update the rate class assignments
for each branch by evaluating the relative probabilities of all possible reassignments to existing
classes and to placement in new auxiliary classes [5]. The number of auxiliary categories is fixed at
four in this implementation to mitigate the computational burden of each Dirichlet process update
while still adequately searching parameter space. An additional update is performed to propose
changes to the rate values associated with every existing category using a rate multiplier.

In this report, we present a parallel implementation of the likelihood function of DPPDIV
that works on multi-core architectures. Moreover, we give two optimised versions of the likelihood
functions using the Streaming SIMD Extensions 2 and 3 (SSE), and using the Advanced Vector
Extensions (AVX). We first provide a description of the SSE and AVX implementation as well as
the parallel extension using OpenMP and test the performances of the implemenentations against
the original single-thread program. The SSE-badsed vectorization is a straight-forward

2 Implementation

After profiling DPPDIV, we have discovered that the program spends over 95% of its runtime
in a function which computes first the conditional likelihoods of each node of the candidate tree,
for each possible site and evolutionary rate. In order to increase the speed of computation we
have implemented two optimized versions of the likelihood function which make use of SIMD
architecture-specific instrunctions. The first version makes use of the SSE3 instruction set and the
second uses the AVX instruction set. Moreover, we have developed a parallel implementation of
the likelihood function using OpenMP which works on multi-core architecture and may also make
use of the SSE or AVX instruction set.

In the rest of this section we describe the SSE3 and AVX implementations of the computation
of the conditional likelihoods for each node, and the computation of the tree likelihood. Finally,
we briefly explain the method of parallelization.

2.1 Computation of conditional likelihoods

We first compute the conditional likelihoods for each internal node of the candidate tree, for each
site and for each evolutionary rate category. These are computed by a bottom-up traversal of
the tree. For a node k that has nodes i and j as its two immediate descendants, the conditional

likelihoods for each possible site assignment is calculated using the sum product method described
in [1]

L
(k)
Sk

=
(

T
∑

Si=A

PSkSi
(bi)L

(i)
Si

)(

T
∑

Sj=A

PSkSj
(bj)L

(j)
Sj

)

(1)

where L
(k)
Sk

is the likelihood of the data in the subtree rooted at node k, given that the nucleotide
state S at k is fixed, and i and j are the two immediate descendants of k. If k is a tip and consists

of a nucleotide, say A, then L
(k)
A = 1 and L

(k)
C = L

(k)
G = L

(k)
T = 0. The function PSkSi

(bi) gives the
probability that a base Sk evolves into Si after the time given by the branch bi from i to k.

The conditional likelihoods for each of the four evolutionary rates and each of the four nucleic
bases are stored in the corresponding node as vectors. We concentrate on the computation of the
conditional likelihoods of only one evolutionary rate as the rest can be iteratively computed in the
same way.

The range of the probability function P given the branch lengths of i and j has been pre-
computed and mapped to the elements of matrices P (i) and P (j), which represent the probability
matrices for the left and right descendant of node k, respectively.

P (i) =









a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4









P (j) =









a′1,1 a′1,2 a′1,3 a′1,4
a′2,1 a′2,2 a′2,3 a′2,4
a′3,1 a′3,2 a′3,3 a′3,4
a′4,1 a′4,2 a′4,3 a′4,4









The conditional likelihoods for each possible nucleotide assignment at states i and j are denoted
by L(i) and L(j), respectively.

L(i) = (b1, b2, b3, b4) L(j) = (b′1, b
′

2, b
′

3, b
′

4)

SSE version The actual SIMD instructions are invoked using intrinsic functions and the cor-
responding vector data types. In this vectorization scheme, we use SSE instructions to load in a
vector register r5 the first two terms

a1,1 · b1 + a1,2 · b2,

a2,1 · b1 + a2,2 · b2

of the first two iterations of the left summation of equation 1. The last two terms of the those
two iterations are stored in a r11, i.e.

r5[a1,1 · b1 + a1,2 · b2, a2,1 · b1 + a2,2 · b2]
r11[a1,3 · b3 + a1,4 · b4, a2,3 · b3 + a2,4 · b4]

The corresponding elements of the two vectors are then added (vector register r12) to get the
left summation part of equation 1 for the first two possible site assignments resulting from the
evolution of the site in the left descendant. Schematically, the whole process is described in the
following way:

a1,1

a1,2

_mm_load_pd
−−−−−−−→ r0[a1,1, a1,2]

_mm_mul_pd
−−−−−−−→ r2[a1,1 · b1, a1,2 · b2]

b1

b2

_mm_load_pd
−−−−−−−→ r1[b1, b2]

a2,1

a2,2

_mm_load_pd
−−−−−−−→ r3[a2,1, a2,2]

_mm_mul_pd
−−−−−−−→ r4[a2,1 · b1, a2,2 · b2]

r1

r2

r4

_mm_hadd_pd
−−−−−−−→ r5[a1,1 · b1 + a1,2 · b2, a2,1 · b1 + a2,2 · b2]

a1,3

a1,4

_mm_load_pd
−−−−−−−→ r0[a1,3, a1,4]

_mm_mul_pd
−−−−−−−→ r8[a1,3 · b3, a1,4 · b4]

b3

b4

_mm_load_pd
−−−−−−−→ r7[b3, b4]

a2,3

a2,4

_mm_load_pd
−−−−−−−→ r9[a2,3, a2,4]

_mm_mul_pd
−−−−−−−→ r10[a2,3 · b3, a2,4 · b4]

r7

r8

r10

_mm_hadd_pd
−−−−−−−→ r11[a1,3 · b3 + a1,4 · b4, a2,3 · b3 + a2,4 · b4]

r5

r11

_mm_add_pd
−−−−−−−→ r12[a1,1 · b1 + a1,2 · b2 + a1,3 · b3 + a1,4 · b4, a2,1 · b1 + a2,2 · b2 + a2,3 · b3 + a2,4 · b4]

We then compute the right summation part of equation 1 for the first two possible site assign-
ments, in exactly the same way as in the case of the left summation part,

r13[a
′

1,1 · b
′

1 + a′1,2 · b
′

2 + a′1,3 · b
′

3 + a′1,4 · b
′

4, a
′

2,1 · b
′

1 + a′2,2 · b
′

2 + a′2,3 · b
′

3 + a′2,4 · b
′

4]

and we multiply the corresponding elements of r12 and r13 to obtain the conditional likelihoods
for state k for the first two possible site assignments. Schematically, using SSE intrinsics

r12

r13

_mm_mul_pd
−−−−−−−→ r14[c · d, e · f]

where
c = a1,1 · b1 + a1,2 · b2 + a1,3 · b3 + a1,4 · b4
d = a′1,1 · b

′

1 + a′1,2 · b
′

2 + a′1,3 · b
′

3 + a′1,4 · b
′

4

c = a2,1 · b1 + a2,2 · b2 + a2,3 · b3 + a2,4 · b4
d = a′2,1 · b

′

1 + a′2,2 · b
′

2 + a′2,3 · b
′

3 + a′2,4 · b
′

4

Finally, we apply the exact same process described in this section to compute the conditional
likelihoods for the other two possible site assignments.

AVX version The main difference between the SSE and AVX implementations is in the fact that
AVX instructions work with 256-bit registers and thus we can simultaneously load all four terms
of each summation part in equation 1. We then perform the multiplications to get the conditional
likelihood for all four site assignements in just one step as opposed to SSE, which does the whole
process in two steps since it works with 128-bit vector registers (which can hold two elements).

Compared to the SSE version, we obtain the first two terms of each iteration of the left
summation in register r11 and the last two terms in register r12. Schematically,

a1,1

a1,2

a1,3

a1,4

_mm256_load_pd
−−−−−−−−−→ r0[a1,1, a1,2, a1,3, a1,4]

_mm256_mul_pd
−−−−−−−−−→ r2[a1,1 · b1, a1,2 · b2, a1,3 · b3, a1,4 · b4]

b1

b2

b3

b4

_mm256_load_pd
−−−−−−−−−→ r1[b1, b2, b3, b4]

a2,1

a2,2

a2,3

a2,4

_mm256_load_pd
−−−−−−−−−→ r3[a2,1, a2,2, a2,3, a2,4]

_mm256_mul_pd
−−−−−−−−−→ r4[a2,1 · b1, a2,2 · b2, a2,3 · b3, a2,4 · b4]

r1

a3,1

a3,2

a3,3

a3,4

_mm256_load_pd
−−−−−−−−−→ r5[a3,1, a3,2, a3,3, a3,4]

_mm256_mul_pd
−−−−−−−−−→ r6[a3,1 · b1, a3,2 · b2, a3,3 · b3, a3,4 · b4]

r1

a4,1

a4,2

a4,3

a4,4

_mm256_load_pd
−−−−−−−−−→ r7[a4,1, a4,2, a4,3, a4,4]

_mm256_mul_pd
−−−−−−−−−→ r8[a4,1 · b1, a4,2 · b2, a4,3 · b3, a4,4 · b4]

r1

r2

r4

_mm256_hadd_pd
−−−−−−−−−→ r9[a1,1 · b1 + a1,2 · b2, a2,1 · b1 + a2,2 · b2, a1,3 · b3 + a1,4 · b4, a2,3 · b3 + a2,4 · b4]

r6

r8

_mm256_hadd_pd
−−−−−−−−−→ r10[a3,1 · b1 + a3,2 · b2, a4,1 · b1 + a4,2 · b2, a3,3 · b3 + a3,4 · b4, a4,3 · b3 + a4,4 · b4]

r9

r10

_mm256_blend_pd,0b1100
−−−−−−−−−−−−−−−→ r11[a1,1 · b1+a1,2 · b2, a2,1 · b1+a2,2 · b2, a3,3 · b3+a3,4 · b4, a4,3 · b3+a4,4 · b4]

r9

r10

_mm256_permute2f128_pd,0x21
−−−−−−−−−−−−−−−−−−→ r12[a1,3 ·b3+a1,4 ·b4, a2,3 ·b3+a2,4 ·b4, a3,1 ·b1+a3,2 ·b2, a4,1 ·b1+a4,2 ·b2]

Finally, we get all terms of the left summation for each possible site assignment by adding
together the corresponding elements of registers r11 and r12

r11

r12

_mm256_add_pd
−−−−−−−−−→ r13[c, d, e, f]

where
c = a1,1 · b1 + a1,2 · b2 + a1,3 · b3 + a1,4 · b4
d = a2,1 · b1 + a2,2 · b2 + a2,3 · b3 + a2,4 · b4
e = a3,1 · b1 + a3,2 · b2 + a3,3 · b3 + a3,4 · b4
f = a4,1 · b1 + a4,2 · b2 + a4,3 · b3 + a4,4 · b4

In similar fashion we obtain the right summation part in register r14

r14[c
′, d′, e′, f ′]

where

c′ = a′1,1 · b
′

1 + a′1,2 · b
′

2 + a′1,3 · b
′

3 + a′1,4 · b
′

4

d′ = a′2,1 · b
′

1 + a′2,2 · b
′

2 + a′2,3 · b
′

3 + a′2,4 · b
′

4

e′ = a′3,1 · b
′

1 + a′3,2 · b
′

2 + a′3,3 · b
′

3 + a′3,4 · b
′

4

f ′ = a′4,1 · b
′

1 + a′4,2 · b
′

2 + a′4,3 · b
′

3 + a′4,4 · b
′

4

and multiply with r14 to get the conditional likelihood for each site assignment for the specific
evolutionary rate category, i.e.

r13

r14

_mm256_mul_pd
−−−−−−−−−→ r12[c · c

′, d · d′, e · e′, f · f ′]

2.2 Computation of tree likelihood

After computing the conditional likelihood for all evolutionary rates of each state, we are in a
position to compute the likelihood of the tree by multiplying the conditional likelihood of each
site of the root node with the base frequencies. This process is described by equation 2.

L =

T
∑

S0=A

πS0
L0
S0

(2)

The base frequencies for each nucleotide are given by the vector

π = (f1, f2, f3, f4)

and the conditional likelihoods of the root node for each evolutionary rate and each of the four
nucleotide bases are represented by the matrix

L(0) =









b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4









where each row represents a specific evolutionary rate.

SSE version We compute the likelihood of the tree by multiplying the conditional likelihoods
of each site with the base frequency. We first load the terms of equation 2 for each of the four
evolutionary rates in registers r6, r7, r8 and r9, respectively. The first element of each of those
registers is the sum of the corresponding first two terms, and the second element is the sum of the
last two terms.

b1,1

b1,2

_mm_load_pd
−−−−−−−→ r0[b1,1, b1,2]

_mm_mul_pd
−−−−−−−→ r2[b1,1 · f1, b1,2 · f2]

f1

f2

_mm_load_pd
−−−−−−−→ r1[f1, f2]

b1,3

b1,4

_mm_load_pd
−−−−−−−→ r3[b1,3, b1,4]

_mm_mul_pd
−−−−−−−→ r5[b1,3 · f3, b1,4 · f4]

f3

f4

_mm_load_pd
−−−−−−−→ r4[f3, f4]

r2

r5

_mm_hadd_pd
−−−−−−−→ r6[b1,1 · f1 + b1,2 · f2, b1,3 · f3 + b1,4 · f4]

Similarly,
r7[b2,1 · f1 + b2,2 · f2, b2,3 · f3 + b2,4 · f4]

r8[b3,1 · f1 + b3,2 · f2, b3,3 · f3 + b3,4 · f4]

r9[b4,1 · f1 + b4,2 · f2, b4,3 · f3 + b4,4 · f4]

We then perform horizontal adds on the vector registers to store the sum of the first two iterations
of equation 2 as the first element of r12 and the sum of the last two iterations as the second
element.

r6

r7

_mm_hadd_pd
−−−−−−−→ r10[c, d]

_mm_hadd_pd
−−−−−−−→ r12[c+ d, e+ f]

r8

r9

_mm_hadd_pd
−−−−−−−→ r11[e, f]

where

c = b1,1 · f1 + b1,2 · f2 + b1,3 · f3 + b1,4 · f4
d = b2,1 · f1 + b2,2 · f2 + b2,3 · f3 + b2,4 · f4
e = b3,1 · f1 + b3,2 · f2 + b3,3 · f3 + b3,4 · f4
f = b4,1 · f1 + b4,2 · f2 + b4,3 · f3 + b4,4 · f4

Finally, we perform a horizontal add on the same vector to obtain the sum of all iterations of
equation 2 as the elements of r13.

r12

r12

_mm_hadd_pd
−−−−−−−→ r13[c+ d+ e+ f, c+ d+ e+ f]

AVX version In a similar manner as in the SSE version, we obtain each of the four terms of the
summation as the elements of a four-element AVX vector register. For each evolutionary rate we
obtain one such register — r2, r4, r6 and r8.

b1,1

b1,2

b1,3

b1,4

_mm256_load_pd
−−−−−−−−−→ r0[b1,1, b1,2, b1,3, b1,4]

_mm256_mul_pd
−−−−−−−−−→ r2[b1,1 · f1, b1,2 · f2, b1,3 · f3, b1,4 · f4]

f1

f2

f3

f4

_mm256_load_pd
−−−−−−−−−→ r1[f1, f2, f3, f4]

b2,1

b2,2

b2,3

b2,4

_mm256_load_pd
−−−−−−−−−→ r3[b2,1, b2,2, b2,3, b2,4]

_mm256_mul_pd
−−−−−−−−−→ r4[b2,1 · f1, b2,2 · f2, b2,3 · f3, b2,4 · f4]

r1

b3,1

b3,2

b3,3

b3,4

_mm256_load_pd
−−−−−−−−−→ r5[b3,1, b3,2, b3,3, b3,4]

_mm256_mul_pd
−−−−−−−−−→ r6[b3,1 · f1, b3,2 · f2, b3,3 · f3, b3,4 · f4]

r1

b4,1

b4,2

b4,3

b4,4

_mm256_load_pd
−−−−−−−−−→ r7[b4,1, b4,2, b4,3, b4,4]

_mm256_mul_pd
−−−−−−−−−→ r8[b4,1 · f1, b4,2 · f2, b4,3 · f3, b4,4 · f4]

r1

The goal is to add all terms of all evolutionary rates together. We start by performing a serie
of horizontal adds in order to gain a vector register r11, such that each of its elements is the sum
of four (of the sixteen) terms of equation 2. The computation is done in the following way,

r2

r4

_mm256_hadd_pd
−−−−−−−−−→ r9[c, d, e, f]

_mm256_hadd_pd
−−−−−−−−−→ r11[c+ d, c′ + d′, e+ f, e′ + f ′]

r6

r8

_mm256_hadd_pd
−−−−−−−−−→ r10[c

′, d′, e′, f ′]

where

c = b1,1 · f1 + b1,2 · f2 c′ = b3,1 · f1 + b3,2 · f2
d = b2,1 · f1 + b2,2 · f2 d′ = b4,1 · f1 + b4,2 · f2
e = b1,3 · f3 + b1,4 · f4 e′ = b3,3 · f3 + b3,4 · f4
f = b2,3 · f3 + b2,4 · f4 f ′ = b4,3 · f3 + b4,4 · f4

Using a permutation instruction we duplicate r11 to a new register r12 which has the first two
and last two elements of r11 swapped between themselves. We add r11 and r12 together to obtain
register r13 whose first element is the sum of the terms generated by the first two iterations of
the summation part and its second element is the sum of the terms generated by the last two
iterations. Elements 3 and 4 are just duplicates of 1 and 2, respectively.

r11

r11

_mm256_permute2f128_pd,0x01
−−−−−−−−−−−−−−−−−−→ r12[e+ f, e′ + f ′, c+ d, c′ + d′]

_mm256_add_pd
−−−−−−−−−→ r13[p, q, p, q]

r11

where

p = b1,1 · f1 + b1,2 · f2 + b2,1 · f1 + b2,2 · f2 + b1,3 · f3 + b1,4 · f4 + b2,3 · f3 + b2,4 · f4
q = b3,1 · f1 + b3,2 · f2 + b4,1 · f1 + b4,2 · f2 + b3,3 · f3 + b3,4 · f4 + b4,3 · f3 + b4,4 · f4

Finally, we perform a horizontal add on r13 and a copy of it to obtain a register whose every
element holds the value of equation 2

r13

r13

_mm256_hadd_pd
−−−−−−−−−→ r14[p+ q, p+ q, p+ q, p+ q]

2.3 Parallelization using OpenMP

We use OpenMP for parallelizing the likelihood computation in DPPDIV. Specifically, we paral-
lelise the for loop that cycles through all sites of a particular node and computes the conditional
likelihood for each site. The conditional likelihood computation part iterates through all internal
nodes, and computes the conditional likelihood for each site for a specific evolutionary rate. For the
computation of the conditional likelihood of an internal node, it is necessary that the conditional
likelihoods of its descendants must have already been computed. Thus, for a specific internal node,
we paralelise the inner loop which processes each site of for a specific evolutionary rate. For this
embarrassingly parallel workload, we use the OpenMP #pragma omp parallel for directive.

Similarly, concerning the computation of the tree likelihood, we paralelize the loop that pro-
cesses each site of the root node using a sum reduction with the directive #pragma omp parallel

for reduction (+ : lnL), where lnL is the variable where the sum of likelihoods of all sites
is ultimately stored in.

3 Experimental results

We demonstrate the performance of the SSE optimized parallel implementation compared to the
unoptimised original implementation and its parallel enhancement in Table 1. The experiments
were conducted on a 48-core AMD Opteron processor machine with 256GB of memory. Our input
data consists of seven species and the alignment size is 448 162 bp long and we run 100 000 markov
chain monte carlo (MCMC) cycles. The measured times are plotted in Figure 1.

Number of threads
Optimization 1 8 16 24 32 40 48

None 306m35s 39m53s 28m10s 27m32s 25m45s 26m15s 35m55s

SSE 196m55s 29m16s 22m44s 23m2s 20m34s 24m41s 26m14s
Table 1. Experimental results

 0

 50

 100

 150

 200

 250

 300

 350

 1 8 16 24 32 40 48

E
la

ps
ed

 ti
m

e
[m

s]

Number of threads [-]

SSE optimized version
Original unoptimized version

Fig. 1. Performance comparison between SSE and non-optimized version

4 Conclusion

In this report we have made modifications that significantly speed up likelihood computation
and hence improve the runtime speed of DPPDIV. We have written two architecture-dependent
versions of the likelihood computation, one which uses the SSE3 instruction set and one which
uses the AVX instruction set. On top of that, we have encapsulated the loops processing the
sites of a specific code in an OpenMP parallel for region which seems to scale fine. With the
conducted experiments we have observed that the parallel version scaling is satisfactory and noticed
a 30% percent improvement on the single-thread SSE and AVX specific versions. Although we
expected the AVX version to be faster than the SSE version by taking in account the official Intel
documentation describing the processor specific instruction clock cycles, the experiments show
that the SSE and AVX versions perform in the same time, with the surprising fact that SSE is
sometimes faster than AVX. This may be due to the fact that the 256-bit data move instructions
limit the data throughput.

References

1. Felsenstein, J.: Evolutionary trees from dna sequences: a maximum likelihood approach. Journal of
Molecular Evolution 17(6), 368–376 (1981)

2. Gallager, R.G.: Low-density parity-check codes. MIT Press (1963)
3. Heath, T.A., Holder, M.T., Huelsenbeck, J.P.: A dirichlet process prior for estimating

lineage-specific substitution rates. Molecular Biology and Evolution 29, 939–955 (2012),
http://mbe.oxfordjournals.org/content/early/2011/12/14/molbev.msr255.abstract

4. Huelsenbeck, J.P., Suchard, M.A.: A Nonparametric Method for Accommodating and Testing Across-
Site Rate Variation. Systematic Biology 56(6), 975–987 (Dec 2007)

5. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. Journal of Compu-
tational and Graphical Statistics 9(2), 249–265 (2000)

