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Abstract—We present a substantially improved and paral-
lelized version of DPPDiv, a software tool for estimating species
divergence times and lineage-specific substitution rates on a
fixed tree topology. The improvement is achieved by integrating
the DPPDiv code with the Phylogenetic Likelihood Library
(PLL), a fast, optimized, and parallelized collection of func-
tions for conducting likelihood computations on phylogenetic
trees. We show that, integrating the PLL into a likelihood-
based application is straight-forward since it took the first
author (DD) a programming effort of only one month, without
having prior knowledge of DPPDiv, nor the PLL. We achieve
sequential speedups that range between a factor of two to
three and near-optimal parallel speedups up to 48 threads on
sufficiently large datasets. Hence, with a programming effort of
one month, we were able to improve DPPDiv’s time-to-solution
on parallel systems by two orders of magnitude and also to
substantially improve its ability to infer divergence times on
large-scale datasets.

Keywords-phylogenetics; parallel computing; divergence time
estimation; programming effort; phylogenetic likelihood

I. INTRODUCTION

One such Bayesian tool is DPPDiv [1], [2]. Given a fixed
tree topology, it estimates branch-specific substitutates
and species divergence times under a nonparametric mixture
model. More specifically, DPPDiv uses a Dirichlet process
prior (DPP) to model variation of substitution rates across
the branches of the tree [1]. The Dirichlet process is useful
for modeling mixtures since it assumes that data elements
(branches of the tree) can be categorized into specific
parameter classes [3], [4]. To model variable nucleotide
substitution rates among branches, the DPP assumes that
the branches of a tree form part of distinct substitutioe rat
categories. Under this model, the number of rate classes,
and the assignment of branches to those classes are treated
as random variables. Special cases of this model are (i) the
so-called global molecular clock that only has one single
rate category [5], (i) the local molecular clock model,
where closely related lineages (subtrees) share the same
substitution rate [6], [7], and (iii) the independent rates
model, where the rate for each lineage is independently
drawn from an underlying parametric distribution [8], [9].

~ Bayesian methods for phylogenetic inference are domin addition to the above models, using a DPP allows to
inated by phylogenetic likelihood computations that aremodel scenarios where distantly related branches located i

used to effectively sample the joint posterior distribotiaf

distant subtrees evolve under the same rate of evolution.

evolutionary parameters and tree topology. Hence, Bayesian evolutionary biology, accurate estimates of lineagediv
methods require efficient, optimized, and parallelizedcfun gence times are important and widely-used for investigatin
tions for calculating the likelihood of the data conditibna biological processes such as historical biogeographygjepe
on a tree topology, branch lengths, and model parametersdiversification, and rates of continuous trait (morphotagi
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properties) evolution. Analyses under the DPP yield robust
estimates of branch rates and divergence times for sintlilate
data [1]. The increased flexibility of this model makes it
applicable for analyzing large phylogenetic trees.



DPPDiv uses Markov chain Monte Carlo (MCMC) to rely on the PLF and therefore lack the inherent advantages
sample the posterior densities of the model parameters araf Bayesian inference methods.
to estimate lineage-specific substitution rates as welbdg n Estimating divergence times in a Bayesian framework
ages. The proposal mechanism for updating the assignmeptovides a natural way for accommodating and quantifying
of rates to branches and to sample the rate parameter valuescertainty in the estimates of phylogenetic parameters
associated with each rate-category for the DPP relies ononder a wide range of complex models for rate variation
Gibbs sampling (Algorithm 8 in [10]). Each time the Markov and lineage diversification [17], [18], [19], [20], [21], ]I8
chain proposes a branch rate change, the PhylogenetMoreover, Bayesian methods (because of their intrinsic flex
Likelihood Function (PLF) is invoked. The PLF needs toibility) allow for straight-forward integration of geolical
be computed for each branch in the tree and for each rat@formation—including fossil data—to calibrate node ages
category. In fact, DPPDiv spends over 90% of overall exethe tree using units of absolute time. This is achieved by
cution time for PLF calculations. The computational cost ofdeploying so-called calibration prior densities [22], ]23
the PLF-based proposal mechanisms limits the scalabiiity o[2]. Because of these methodological advantages and despit
DPPDiv as the number of tips (branches) and/or number otheir high computational cost, Bayesian methods represent
sites increases. Thus, without an optimized and paratiéliz the most widely-used approach to estimate the times of
PLF implementation, divergence time analyses under thepecies divergence events in biological studies (e.g., [24]
Dirichlet process model in DPPDiv is not feasible on large-[25], [26], [27], [28])
scale datasets. Bayesian methods for divergence time estimation are

To improve performance and scalability of DPPDiv, we implemented in several tools [21], [29], [30], [31], [32],
optimized the compute-intensive PLF part of DPPDiv. The[1], [33]. Because of the computational burden of Bayesian
code was optimized by replacing the native PLF imple-inference using MCMC in conjunction with the PLF, some
mentation by corresponding functions from tRdyloge- implementations use computational shortcuts to appraxima
netic Likelihood Library (PLL) which we are currently the PLF via a multivariate normal distribution [18], [21],
developing. Our intention is to show that (i) it requires a[32], [34]. These approaches provide reasonably accurate
relatively low programming effort to integrate the PLL with divergence time estimates given that the assumptions of
a PLF-based program and (ii) that substantial sequentighe rate variation model are not seriously violated [34].
and parallel speedups can be achieved by using the PLBecause of this limitation, it is thus preferable to caltala
which is based on the highly efficient PLF implementa-the exact likelihood score of the sequences given a set of
tion in RAXML [11]. Combining the optimized serial PLL branch lengths. Furthermore, in conjunction with hardware
implementation with the parallel version of the PLL, we advances, appropriately adapted efficient implementsiidn
obtained performance improvements with respect to théhe PLF allow for accurate divergence time estimation under
original DPPDiv implementation ranging between a factormore complex and parameter-rich models.
of 2 and a factor of 357 Divergence time estimation algorithms as implemented

The remainder of this paper is organized as follows: Inin the popular Bayesian software programs BEAST [31]
Section II, we briefly review related work on PLF libraries and MrBayes 3.2 [33] leverage the efficient likelihood func-
and cover some state-of-the-art implementations for divertions available in the BEAGLE library [35]. However, the
gence time estimation. Then, we provide an overview of thdBEAGLE library has some shortcomings in comparison to
PLL in Section III. In the following Section IV we describe the PLL. Firstly, it does not offer support for 256-bit wide
how we integrated the PLL with DPPDiv. Thereafter, we X86 AVX vector intrinsics, nor does it implement a fine-
demonstrate sequential and parallel speedups obtained lgyain MPI parallelization of the PLF, thereby only allowing
integrating PLL with DPPDiv (Section V). We conclude in for exploiting intra-node shared-memory parallelism. sThi

Section VI and address directions of future work. is a limitation when analyzing very large datasets that may
require more RAM to compute the PLF than available on a
Il. RELATED WORK single node (see [36]). In addition, BEAGLE does not offer

the capability to conduct partitioned analyses where wifie

A relatively large number of methods for estimating (independent) sets of parameters are sampled for distinct
lineage divergence times has already been proposed. Feites (columns) of the input alignment. As a consequence,
large datasets, there exist several fast (not based on tlie does also not implement appropriate load balancing
PLF) methods for obtaining estimates of node ages, such asechanisms [37], [38] to improve the parallel efficiency
non-parametric rate smoothing or penalized likelihood,[12 of partitioned analyses. Finally, BEAGLE does not offer
[13], [14], distance-based least-squared approaches [15$ome of the advanced memory saving techniques [39], [40]
or methods that use the relative rates between sister lirthat form part of the PLL. Excessive memory requirements
eages [16]. Although these methods are fast and thus capaltan constitute a limiting factor for large-scale PLF-based
of estimating divergence times on large datasets, they to nanalyses.



I11. PHYLOGENETIC LIKELIHOOD LIBRARY

Create a starting

The design and implementation of reusable software com tree and model Phylogenetic
ponents in the form of software libraries has substantially '-‘I'_‘ieb“r';‘r’;d
contributed to the rapid development and deployment of
software tools in the field of bioinformatics. Actﬁeep;rg;g‘?;ICt( ,4

The advantage of such libraries is that bugs in the code )
can be reduced to a minimum because of a large an Y Calculata the
active user community. Moreover, libraries allow users to| o ier posterior for
instantly take advantage of low-level code optimizations propose!
and thereby fully exploit the computational power of the +_
underlying hardware without having to re-invent the wheel.

Thus, researchers become more productive because they can propose a new state

focus on developing new algorithms and models, instead ‘Samp‘evcwem Randomly T —
tuning and parallelizing fundamental kernel functions. state 'e'etcot Esgaartzete_)fo\\owmgthe prior

The PLL is a parallelized and highly optimized soft-
ware library for the PLF that has been derived from the
corresponding PLF implementation in RAXML-Light [36],
a tool for inference of large phylogenies under maximum
likelihood [41].

The PLL prototype version implements functions for Figure 1. Outline of the Markov Chain Monte Carlo (MCMC) implen-
computing conditional likelihood arrays and overall log tation used in DPPDiv.
likelihood scores on phylogenetic trees for DNA and pro-
tein sequence data. Moreover, it also offers functions for
optimizing branch lengths and other model parameters that
are required for building maximum likelihood codes. It uses
manually tuned functions that rely on SSE3 and AVX vector . . .
intrinsics. Moreover, it offers a fine-grained paralletina amount of programming effort. For this reason we directly
of the PLF that relies either on PThreads or MPI (MessagéIsecj thg free and modgl data structures n the PLL. In or-
Passing Interface) for exploiting inter-node parallelisitn der t_q cw_cumvent comphcated,_and potentially error-fron
also allows for conducting partitioned analyses and usegwodmcatlons to the way DPPDIv updates model parameters

the aforementioned load balancing techniques [37], [38] td" its native, rooted tree data structure, we designed a

: s . one-to-one mapping of the DPPDiv tree data structure to
improve parallel efficiency. We are currently also devehgpi )
a GPU version of the PLL. the unrooted PLL tree data structure (see Figure 2). Note

that, exchanging tree data structures between an applicati
IV. INTEGRATION WITH DPPDV and the PLL currently represents a challenging software

The integration of the PLL into DPPDiv was relatively engineering issue for the library. The BEAGLE library is
straight-forward. In terms of programming effort, it todiet ~completely tree-agnostic and defers the responsibilitgienf
first author of this paper (DD) approximately one month toSIgning a tree data structure to the application programmer
fully complete the integration. This was achieved without\WWe opted for a different approach in PLL, because the
prior knowledge of DPPDiv or the PLL. Given these cir- availability of such a data structure in the library allows
cumstances, the effort in terms of man hours that were spef@" rapid prototyping and facilitates the use of the library
is very low, particularly given the speedups in computation The tip nodes o to ny_1, whereN is the number of
gained. taxa) and inner nodes:fy to non—3), excluding the root

In Figure 1, we provide a top-level view of the Markov node, of the DPPDiv tree data structure are mapped to the
chain Monte Carlo (MCMC) proposal implementation in unrooted PLL tree data structure via a bijective function.
DPPDiv. Note that, in DPPDiv the tree topology remainsThis bijective function guarantees that each node in the PLL
fixed and that either the number or the values of modetree data structure is connected to the same neighbors as the
parameters are being sampled/changed by a proposal. Th@rresponding tree in DPPDiv, once again, excluding the
to decide whether to reject or accept a proposal, we neetot node. Branch lengths are linked in such a way that
to re-compute the log likelihood score on the tree for thethey are guaranteed to connect corresponding nodes in the
altered models parameters. For this reason, we only use ttigspective tree data structures.
respective subset of PLL functions to compute conditional The root node used in DPPDiv is represented by placing
likelihood arrays and calculate the overall log likelihood a virtual root into the unrooted PLL tree data structure.
score at the root of the tree. the virtual root is located between the two children of the

Stop after
N cycles

Our main design criterion for integrating the PLL into
DPPDiv was to obtain optimal performance with the least



root node. The length of the branch on which the virtual
root is located is simply the sum of the two branch lengths
that lead from the root to the children in the DPPDiv tree
representation.

Given this tree mapping from DPPDiv to the PLL, we can
now directly use the PLL likelihood function implementatio
without any additional modifications to the DPPDiv source
code.
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Figure 2. Mapping of the rooted native tree representatioBPPDiv to e

the unrooted internal tree representation of the PLL.
Figure 3. Outline of the interaction between DPPDiv and thé Ror
evaluating a proposal. This Figure also shows the diffetges of model

The model parameters (e.g., branch times and rates, s@aameters that can be changed by a DPPDiv proposal.
Figure 3) that are changed/proposed by DPPDiv can be
mapped to corresponding PLL data structures by using the
appropriate PLL interface functions in a straight-forwardthe PLL implementation uses a likelihood scaling technique
manner. Once these functions for updating model parametetaat prevents numerical underflow. Numerical underflow in
in the PLL and subsequently re-computing the overall loglikelihood computations (essentially we are multiplying a
likelihood using the PLL have been integrated, no furtherarge number of probabilities with each other in likelihood
changes to the MCMC proposal mechanism in DPPDiv areomputations) needs to be handled by appropriate techmique
required. The proposal mechanism initially alters one ef th (for details see [42]), in particular for trees where the
model parameters shown in Figure 3. We then invoke aumber of taxa is larger than approximately 100. Thus, bette
function to change this model parameter accordingly in thenumerical stability comes for free with the PLL integration
PLL instance. Subsequently, we use the PLL to compute the
log likelihood score of the tree for the changed parameter.
The log likelihood score is then returned to DPPDiv so that To evaluate the performance of the PLL-based versions of
the posterior probability of the proposal can be computed. DPPDiv we measured execution times using a fixed random

For DPPDiv, the execution of the PLF evaluation by thenumber seed to generate reproducible results. We used 2 bio-
PLL represents a black box. It is hence entirely obfuscatedbgical datasets [43] and generated several simulatedetata
to DPPDiv, whether the likelihood function is executed using the APE package [44] for generating random non-
sequentially, using SSE3/AVX intrinsics, or in paralleings  ultrametric tree with branches according to a exponential
either PThreads or MPI. All of the above technical issueswith mean 1/10=0.1 andeqg-gen45] to simulate sequence
including data distribution to threads or processes arédmnid data on these trees and GTR+G models. Hence, a set of DNA
in the library. The user only needs to decide which type ofdatasets with distinct numbers of taxa, sites, and unigee si
intrinsics (SSE3 versus AVX) and which parallel implemen-patterns were available for testing which are summarized
tation (MPI versus PThreads) he wants to compile and usdn Table |. Note that, the number of unique site patterns is
The user will also have to specify how many threads omore relevant for quantifying performance, since ideftica
processes to use. alignments sites can and are compressed into site patterns

Apart from improving performance (see below) the in- prior to PLF calculations by DPPDiv and the PLL.
tegration of the PLL also enhances the numerical stability We used two shared-memory multi-core systems for test-
of DPPDiv. Unlike the native DPPDiv PLF implementation, ing: a Sandy Bridge node with 32GB RAM and 2 Intel

V. EXPERIMENTAL SETUP AND RESULTS



Xeon E5-2630 hexa-core Sandy Bridge processors (a total of
12 cores) and Hyperthreading disabled, and a Magny-Cours Sequential execution times
node with 128GB of RAM and 4 AMD Opteron 6174 12- 20 [T=—= MC-ORIGINAL
core processors (a total of 48 cores). We compiled 4 PLL g || oo MO-PLL-SSES

r = SB-ORIGINAL

instances with SSE3 and AVX intrinsics, PThreads and MP1 ¢ || == S8-PLL-25E3

using gcc v4.7.0. AVX intrinsics are only available on the g 14 7
Sandy Bridge node. Both nodes run Linux Red Hat 4.4.6-4. £ ,,
For testing the MPI performance of the PLL we used £ 10
. . c
several nodes (e.g, an execution with 96 cores on the Sandye 4
. (5]
Bridge cluster used 8 nodes and 12 cores per node). Thet
nodes are interconnected through an Infiniband QDR (8 4 —
Ghit/s) interconnect. 5
I %@
Table | Alignl  Align2  Align3  Alignd4  Align5  Aligné  Align7
ALIGNMENTS USED TO BENCHMARKDPPDV PERFORMANCE IN Multiple Sequence Alignment
COLUMN Size N INDICATES THE NUMBER OF SEQUENCESL THE
LENGTH OF THE ALIGNMENT AND U.P. THE NUMBER OF UNIQUE SITE
PATTERNS Num. cyclesNDICATES THE NUMBER OFMCMC Figure 4. Comparison between the sequential versions of atieenDP-
ITERATIONS EXECUTED FOR EACH ALIGNMENT ALIGNMENTS 1 PDiv (ORIGINAL implementation and the sequential PLL-based DPPDiv

THROUGH 5 ARE SIMULATED ALIGNMENTS, WHILE 6 AND 7 ARE implementation using SSEP(L-SSE} and AVX (PLL-AVX. The suffix
REAL-WORLD DATASETS. COLUMN Seq.exec.timsHOWS THE indicates the system: MC for the Magny-Cours node and SB ®Séndy

EXECUTION TIME OF THE ORIGINALDPPDYV IMPLEMENTATION, IN Bridge.

HOURS.
Data set Size Seg.exec. Num.

Athf?V'alt'O“ 2’\‘5 7'-200 %'334 “mel(;‘; C{%l(e)SOOO speedups with alignments 6 and 7. The number of unique site
Al:gﬁz 82 5167 4763 14.69 100,000 patterns is not a determining factor for these tests, despit
Align3 118 924 924 3.55 100,000 the fact that, performance also improved slightly with an an
ﬁ:!gng 18 %‘31212;(5) ‘212,2(1)3 i-gg 188’888 increasing number of site patterns. Overall, we achieve a

gn ) ) . , . .
Align6 125 29149 19436 1747 10,000 twp— to three-fold sequential performance improvement by
Align7 169 35,603 29,064 20.03 2,000 using the PLL.

B. PThreads Performance
We define the parallel speedup d3/7,, where T}
is the time required by the serial execution of the PLL
implementation, and’, is the respective execution time with

SSE3 vs AVX and Magny-Cours vs Sandy Bridge comparison
n PThreads or MPI processes.

10

—— ‘Magnnyc»ur‘s SSE3
. xXxxxx Sandy Bridge SSE3
A. Sequential SSE3 and AVX Performance ez Sandy Bridge AVX

In Figure 4 we present the sequential execution time
improvements of the PLL-based SSE3 and AVX versions
over the original DPPDiv implementation. The PLL like-
lihood implementation performs particularly well on trees
with a large number of taxa. This may also be associ-
ated with the fact that the PLL implements a numerical
scaling technique to prevent numerical underflow and is
hence numerically more stable on these large datasets. We
measured the denormalized floating point exceptions in 1
both the original DPPDiv implementation and the PLL- Number of threads
based using the Alignment7 dataset. This test shows that
the PLL-based implementation does not throw any of thes€igure 7. Comparison between the absolute runtimes on SaridgeBr
exception, while the original DPPDiv implementation theow (With SSE3 and AVX intrinsics) and Magny-Cours nodes (WitBES
20 x 10° floating point exceptions. We assume that this'm”nS'CS) using PThreads on up to 12 cores.
disproportional slowdown is associated with the original
DPPDiv implementation generating so many denormalized We assessed the performance of the PLL PThreads version
floating point values (and hence exceptions) because is lackusing SSE3 intrinsics on one of the Magny-Cours nodes and
a numerical scaling procedure. Hence, we achieved the bebbth SSE3 and AVX intrinsics on one of the Sandy Bridge

Execution Time (seconds x 103)
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Figure 5. Scalability of DPPDiv using the Phylogenetic Llikeod Library with PThreads (using SSE3 and AVX intringics the Sandy Bridge and
the Magny-Cours nodes.

Table I
COMPARISON OF THE RUNTIMES(IN SECONDS BETWEEN THE ORIGINALDPPDYV IMPLEMENTATION AND PLL-BASED IMPLEMENTATION WITH
PTHREADS USINGSSES3INTRINSICS ON THEMAGNY-COURS NODE

ORIG 1 4 8 12 16 24 32 48
Alignl 4,928 | 1,715 434 235 170 139 | 117 | 101 | 109
Align2 52,880 | 13,030 | 3,164 | 1,724 | 1286 | 1,271 | 831 | 617 | 602
Align3 12,770 | 2,845 796 484 468 374 | 369 | 364 | 417
Align4 10,243 | 4,151 | 1,051 | 557 347 263 | 175 | 131 | 98
Alignb 16,202 | 6,695 | 1,949 | 1,057 | 579 440 | 296 | 223 | 160
Align6 62,890 | 14,917 | 3,921 | 1,876 | 1332 | 1,056 | 680 | 501 | 428
Align7 72,105 | 9,217 | 2,361 | 1,214 | 703 605 | 381 | 293 | 202

nodes. The alignment site patterns are evenly distributetime to solution of the PLL-based PThreads implementation
among the threads by the PLL as described in [46]. Thever the original DPPDiv implementation was observed for
scalability of the PThreads and MPI (see below) versionsalignment 7. We achieve a 357-fold (72,105 versus 202
of the PLL mainly depends on the number of unique siteseconds) on this dataset. Overall, given that the alignment
patterns in the alignment (see, e.g., [46]). The speedup plois long enough (has enough unique site patterns), we ob-
in Figure 5 and the parallel efficiency plots in Figure 6 serve good parallel scalability for the PLL-based DPPDIV
illustrate these results. For the sake of completeness weersion. For alignments 6 and 7, we observe almost linear
also show the absolute execution times for the originalspeedups even for 48 cores. Hence, using the fast PLL kernel
sequential PLL and PThreads-based PLL versions of DPimplementation in conjunction with the PThreads version
PDiv in Table Il, and a comparison between the two nodecan improve DPPDiv performance by more than a factor
types in Figure 7. The best overall improvement in terms ofof 100 compared to the original, sequential version. More
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Figure 6. Parallel efficiency of DPPDiv using the Phylogenktkelihood Library with PThreads (using SSE3 and AVX insics) on the Sandy Bridge
and the Magny-Cours nodes.

importantly, the parallelism essentially comes for fre¢hwi immense memory requirements of large genomic alignments
the PLL. that can not typically be handled by a single node.

C. MPI Performance VI. CONCLUSION AND FUTURE WORK

The MPI performance tests show to which extent the We have presented an initial version of our phyloge-
speedups depend on alignment length. Note that, individualetic likelihood library and used it to boost performance
Sandy cores are substantially faster than Magny-Courscoref DPPDiv, a new program for Bayesian inference of di-
(see Table IIl). Hence, the performance penalty induced byergence times estimates using a Dirichlet process prior.
waiting for communication is larger on the Sandy cores,Source code and datasets are available at https://github.
since less time is required to conduct the per-process likecom/ddarriba/pll-dppdiv. Since DPPDiv heavily relies on
lihood computations. In other words, the communication tolikelihood computations it represented an ideal candidate
computation ratio on these nodes is less favorable thaneon tho demonstrate the advantages of the PLL. Integrating the
Magny-Cours system. In Figure 8 we show the scalabilityPLL into DPPDiv took a visiting PhD student in our lab
and parallel efficiency results for the PLL-based version(DD) only about a month without having prior knowledge
of DPPDiv that uses MPI. However, the scalability of the of DPPDiv or the PLL. By integrating the PLL, we ob-
MPI version of the PLL will increase with an increasing tained sequential speedups of 2.4 to 7.8 over the original
number of distinct site patterns. Such large whole-genom®PPDiv implementation. By deploying fine-grain loop-level
scale datasets already exist and are being analyzed (e.parallelism with PThreads, that comes for free with the PLL
www.1kite.org). The MPI version in the PLL has been and is transparent to the developer of the target applitatio
adapted from RAXML-Light [36] and shows good scalability we obtained near-optimal speedups on sufficiently large
using a large number of processes on whole-genome aligrinput datasets. Using the PThreads version on a 48-core
ments. The MPI version will also help to accommodate thenulti-core system in conjunction with the fast sequential



Table 111
COMPARISON OF THE RUNTIMES(IN SECONDS OF THE PLL-BASED IMPLEMENTATION BETWEEN THEMAGNY-COURS(MC) AND THE SANDY
BRIDGE (SB) CLUSTERS USINGMPI.

1 4 8 24 48 96

MC SB MC SB MC SB MC SB | MC SB | MC SB
ALIGN1 1,715 1,177 480 345 247 251 | 133 156| 158 192| 197 224
ALIGN2 | 13,030 8,462| 3,712 2,370| 1,856 1,605| 747 839 | 820 908| 940 1,070
ALIGN3 | 2,845 1,926 912 572 590 634 | 639 696 | 704 929| 963 1,132
ALIGN4 | 4,151  2,636| 1,101 689 541 418 | 188 146 111 106| 92 90
ALIGN5 | 6,695 4,726| 1,712 1,144| 880 685 | 279 225| 169 144| 119 111
ALIGN6 | 14,917 9,139| 3,978 2,239| 1,984 1,370| 664 501| 420 365| 342 326
ALIGN7 | 9,217  4,453| 2,309 1,107| 1,208 557 | 383 232| 203 135| 161 98
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Figure 8. Performance and parallel efficiency of DPPDiv usheg Phylogenetic Likelihood Library with MPI and SSE3 and)®¥Atrinsics.

implementation that relies on vector intrinsics, we werkeab the documentation of the PLL, add additional models and
to reduce the time to solution of DPPDiv by more than adata-types, and design a production-level GPU implementa-
factor of 100 (over factor 350 in the best case), that is, bytion of our kernels.

two orders of magnitude.
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