
A generic Vectorization Scheme and a GPU kernel

for the Phylogenetic Likelihood Library

Fernando Izquierdo-Carrasco1∗, Nikolaos Alachiotis2∗, Simon Berger2∗,

Tomáš Flouri3∗, Solon P. Pissis4∗† and Alexandros Stamatakis∗

∗The Exelixis Lab

Scientific Computing Group

Heidelberg Institute for Theoretical Studies

Heidelberg, Germany

Email: {fernando.izquierdo, nikolaos.alachiotis, simon.berger, tomas.flouri, alexandros.stamatakis}@h-its.org
†Florida Museum of Natural History

University of Florida

Gainesville, Florida, USA

Email: spissis@flmnh.ufl.edu

Abstract—Highly optimized library implementations for im-
portant scientific kernels can improve scientific productiv-
ity. To this end, we are currently developing the Phyloge-
netic Likelihood Library (PLL) that implements functions
to compute and optimize the phylogenetic likelihood score
on evolutionary trees. Here, we focus on novel techniques
to orchestrate likelihood computations on large vector-like
processors such as GPUs. We present a novel scheme for
vectorizing computations and organizing conditional likelihood
arrays (CLAs) in such a way that they do not need to be
transferred at all between the GPU and the CPU. We compare
the performance of our GPU implementation for DNA data
with a highly optimized x86 version of the PLL that relies
on manually tuned AVX intrinsics. Our GPU implementation
accelerates the likelihood computations by a factor of two
compared to the, most probably, currently fastest available
x86 implementation. We conclude that, a hybrid GPU-CPU
version needs to be developed and integrated into the PLL to
leverage the computational power of modern desktop systems
and clusters.

Keywords-phylogenetics; maximum likelihood; GPU;
OpenCL; vector intrinsics;

I. INTRODUCTION

The design and implementation of reusable software com-

ponents as part of software libraries contributed substantially

to the rapid development and deployment of software tools

in the field of bioinformatics over the past years.

One of the advantages of such libraries is the amount of

man-power that can be saved by not re-inventing the wheel.

Moreover, library developers typically employ unit testing

as part of their development cycle. Therefore, in combi-

nation with bug reports from the community that uses the

1Supported by DFG project STA-860/3
2Supported by DFG project STA-860/2
3Supported by DFG project STA-860/4
4This work was supported in part by the NSF-funded iPlant Collaborative

(NSF grant #DBI-0735191)

library, the amount of bugs may be kept comparatively low.

However, the major advantage of using software libraries

is that they often give the user access to parallelized and

hardware-based optimized function kernel implementations.

These functions may not only significantly improve the

performance of the tool that is being developed, but also

saves countless and unnecessary man-hours that are wasted

to efficiently re-implement a fundamental function.

The phylogenetic likelihood function (PLF) introduced by

Joe Felsenstein in 1981 [1] is one of the most important sta-

tistical functions in the area of evolutionary Bioinformatics.

It is the fundamental computational kernel for a plethora

of widely-used and highly cited Maximum Likelihood and

Bayesian tree inference programs such as MrBayes [2],

PHYML [3], RAxML [4], GARLI [5], etc. Moreover, it is

also essential for Bayesian programs that infer divergence

times using the relaxed molecular clock model such as

BEAST [6] or DPPDiv [7]. In all of the above applications,

the phylogenetic likelihood function (PLF) dominates both,

inference times (typically accounting for 80 - 95% of total

execution time) and overall memory requirements (account-

ing for at least 70% of total RAM consumption). To this

end, numerous efforts have been undertaken to optimize,

parallelize, and accelerate the PLF as well as to reduce its

memory requirements [8], [9]. This is required to (i) build

competitive tools and (ii) keep up with the molecular data

deluge.

Provided over ten years of experience in optimizing

and parallelizing the PLF, we thus decided, to develop a

Phylogenetic Likelihood Library (PLL) that incorporates all

computational techniques that have been developed during

the past years. Ideally, the PLL will allow researchers to

focus on model and algorithm development without having

to re-invent the wheel by developing their own, ad hoc PLF

and possibly inefficient implementation.



The PLL is based on the highly tuned PLF implementation

of RAxML [4] and supports SSE3 and AVX intrinsics,

as well as fine-grain PThreads and MPI parallelizations

that rely on a master-worker scheme for executing parallel

regions. The PLL has already been successfully deployed

to substantially accelerate DPPDIV [7], a Bayesian program

for divergence time(s) estimates.

Here, we focus on the development of a new, generic

vectorization scheme for the PLF that allows to transparently

deploy vector units of arbitrary length for PLF computations.

We consider x86 intrinsics (128-bit wide SSE3 instructions

and 256-bit wide AVX instructions) as well as GPUs as tar-

get vector units. A generic vectorization scheme is important

to ensure portability of the code to increasing vector lengths

(e.g., the 512-bit wide vector units of the new Xeon Phi

processor). We also introduce a GPU memory organization

scheme that reduces the amount of data that needs to be

transferred between the GPU and the CPU to an absolute

minimum, thereby improving performance. Furthermore,

we provide a direct GPU implementation of the Newton-

Raphson optimization procedure that is required to optimize

branch lengths in Maximum Likelihood implementations.

Our long-term goals are to provide a highly optimized

open-source library that entails state-of-the art implemen-

tations for all common input datatypes (DNA, protein data,

etc) and that can be executed transparently on a large number

of emerging parallel architectures. Hence, while we focus

on technical issues here, one of the key future software

engineering challenges will consist in designing an easy-

to-use API.

According to our experiments our GPU implementation of

the PLF is approximately twice as fast as the highly tuned

x86 version of the PLF that relies on manually inserted and

optimized AVX vector intrinsics.

The remainder of this paper is organized as follows: In

Section II we survey related work on PLF library and GPU

implementations. In Section III we provide an overview over

the library. Thereafter, we describe the generic vectorization

scheme in Section IV. In the subsequent Section V we cover

technical details of the GPU implementation. Thereafter, we

describe the experimental setup and the results we obtained

(Section VI) and conclude in Section VII.

II. RELATED WORK

Early work on porting the RAxML likelihood functions to

GPUs in the pre-CUDA and pre-OpenCL era was reported

in [10].

Exploiting fine-grain parallelism with GPUs for the PLF

has previously been addressed in [11] and [12] for Mr-

Bayes [2]. However, these implementations represent case

studies or only cover a small subset (for specific data types

such as DNA data) of the PLF in MrBayes. Hence, these

initial efforts do not represent production-level implementa-

tions, but rather proof-of-concept studies.

The BEAGLE [13] (general purpose library for evaluat-

ing the likelihood of sequence evolution on trees) library

introduced an application programming interface (API) for

PLF computations and also offers efficient implementations

thereof. BEAGLE can exploit modern hardware using SSE3

intrinsics, multi-threading, and GPUs. It has been integrated

into Bayesian programs (BEAST [14] and MrBayes [2]) and

Maximum Likelihood programs (GARLI [5]). The BEAGLE

paper [13] reports performance results for DNA and Codon

data on two 15-taxon datasets. The test datasets contained

8558 unique nucleotide (DNA) site patterns and 6080 unique

codon site patterns respectively. For each of the three

programs integrated with BEAGLE, the authors measured

the speedup of the BEAGLE CPU, SSE3, and GPU (under

single and double precision) implementations with respect

to the corresponding native implementations. The largest

speedups were obtained by the GPU implementation. For

GARLI, only GPU speedups were reported (factor 3.8 for

DNA data and 12 for codon data under double precision).

The BEAGLE-based version of MrBayes yielded a maxi-

mum speedup of 16 (DNA data) and of 31 (Codon data)

on the GPU using double precision arithmetics. Note that

the relative speedup for MrBayes comparing the BEAGLE

CUDA against the BEAGLE SSE3 performance was approx-

imately 4.6 for DNA data. BEAST showed similar speedups

for the GPU implementation under double precision (14-fold

for DNA data and 37-fold for codon data). The speedups

for single precision were larger. However, for large-scale

real-world datasets (in particular with a high number of

taxa), double precision arithmetics are typically required to

guarantee numerical stability of the PLF [15].

Our PLL offers additional features that BEAGLE does not

support. The PLL can also use AVX intrinsics. Furthermore,

it implements numerical optimization functions such as the

Newton-Raphson method for branch length optimization.

BEAGLE defers these tedious programming tasks to the ap-

plication programmer. It only offers functions for computing

the first and second derivative of the likelihood function

that can then be used by the application programmer to

implement a Newton-Raphson branch length optimization

procedure. Moreover, BEAGLE does currently not allow

for conducting partitioned analyses which, given that parti-

tioned analyses (distinct sets of likelihood model parameters

are estimated for different parts of the multiple sequence

alignment) are becoming increasingly common, represents a

drawback of BEAGLE. As a consequence, BEAGLE does

also not implement techniques [16], [17] for improving par-

allel load balance for partitioned analyses. Unlike the PLL,

it does not offer a fine-grain MPI parallelization of the PLF

and is hence limited to stand-alone shared memory nodes.

Finally, BEAGLE does not implement the CAT model of rate

heterogeneity [18] which can yield substantial computational

savings in terms of floating point operations and memory

compared to the standard Γ model of rate heterogeneity [19].



III. PHYLOGENETIC LIKELIHOOD LIBRARY

The Phylogenetic Likelihood Library (PLL) is a paral-

lelized and highly optimized software library derived from

RAxML [4], a software tool for inference of large phylo-

genies under maximum likelihood. The current PLL code

comprises implementations of state-of-the-art algorithms and

data structures along with low-level technical and hardware-

dependent optimizations. The library can calculate (and opti-

mize) the likelihood on a phylogenetic tree for a plethora of

statistical models and data types. It also implements branch

length optimization and various tree alteration mechanisms,

such as Subtree Pruning and Regrafting (SPR) and Near-

est Neighbor Interchanges (NNI). Moreover, PLL can use

multiprocessor architectures via a fine-grain parallelization

of the PLF that relies on PThreads or MPI. In the parallel

version, the alignment sites (or alignment partitions) are

distributed across processors. Single x86 cores use SSE3

or AVX intrinsics to accelerate computations.

In the following, we describe in more detail those PLL

functions which are required to outline the vectorization

scheme and GPU implementation later-on.

For computing the likelihood on a tree, we need the

following two core functions:

• The newview() function updates a conditional like-

lihood vector given two child nodes and given two

transition probability matrices P for the respective

branch lengths leading to these child nodes.

• The evaluate() function is called at the virtual

root that has been placed into the unrooted tree for

scoring it. Given the two conditional likelihood arrays

at either end of the rooted branch and the branch length,

evaluate() computes the overall log likelihood of

the tree.

Usually, to compute the log likelihood of a tree, we

need to conduct a post-order traversal of the tree topology

(starting at the virtual root) and invoke newview() at each

inner node. Once our post-order traversal reaches the virtual

root, we invoke evaluate() to calculate the overall log

likelihood score. Note that, evaluate() and newview()

are sufficient to implement a Bayesian inference program,

since the MCMC procedure, unlike the maximum likelihood

method, does not require dedicated parameter optimization

routines.

In the Maximum Likelihood (ML) framework however,

we do need such explicit parameter optimization routines.

Typically, branch length optimization is implemented via the

Newton-Raphson procedure. Also note that, branch length

optimization accounts for approximately 30% of total execu-

tion time in state-of-the-art ML tree inference algorithms. To

optimize a specific branch, we need to invoke newview()

first on the nodes at either end of the branch to ensure

that the conditional likelihood arrays (CLAs; frequently also

called ancestral probability vectors) are consistent with the

branch that is being optimized. In fact, this corresponds

to placing the virtual root of the tree into the branch that

shall be optimized. Furthermore, we also need to invoke

newview() when a branch has been changed to ensure

that the conditional likelihood arrays in the tree are in a

consistent state and reflect the changed branch.

The PLL implements the following two routines for the

Newton-Raphson branch length optimization procedure:

• coreDerivative() computes the first and second

derivative of the likelihood function at a given branch.

• sumGAMMA() pre-computes the element-wise product

of the CLAs to the left and the right of the branch under

optimization. This product is then re-used repeatedly by

iterations of coreDerivative() and allows to save

time by avoiding redundant computations.

Also note that, the PLL provides a function for direct

branch length optimization (called makenewz()) using

the Newton-Raphson procedure that uses the two functions

described above.

IV. GENERIC VECTORIZATION

An important part of the PLF is the newview() function

that computes the CLAs at inner nodes of the tree in the

course of a post-order traversal. The entries of these CLAs

are computed according to Equation 1. The innermost loop

of newview() calculates the sum over products between

elements of the transition probability matrix P and corre-

sponding elements in the CLA L.

Li(xi) =





T
∑

xj=A

Pxixj
(bj)Lj(xj)





×

[

T
∑

xk=A

Pxixk
(bj)Lk(xk)

]

(1)

This Equation is equivalent to calculating the scalar prod-

uct between rows of P and regions (sub-vectors) of L. The

number of matrix columns and hence the length of the sub-

vectors corresponds to the number of states in the model

and data. For DNA data there are four states (A, C, G and

T) and for protein data there are 20 states. For the sake

of simplicity, let us consider DNA data. It is important to

note that, depending on the model of nucleotide substitution,

there can often be more than one probability value per char-

acter/state at each site/element of the CLA. The widely-used

Γ model of among-site rate heterogeneity [19], integrates the

likelihood over the Γ function. This integral is approximated

by discretizing the Γ function via usually four discrete

rates (to save computations and memory). Hence, likelihood

computations under the Γ model with four discrete rates

require calculating and storing 16 values per alignment site

in a CLA element (four values for A, four values for C, etc.).



A C G T A C G T A C G T A C G T A C G T A C G T A C G T A C G T

rate 0 rate 1 rate 0 rate 1 rate 0 rate 1 rate 0 rate 1

site 0 site 1 site 2 site 3

Figure 1. Memory layout of a CLA with a vector width of 1 (VW := 1)

A A C C G G T T A A C C G G T T A A C C G G T T A A C C G G T T

rate 0 rate 1 rate 0 rate 1

site 0/1 interleaved site 2/3 interleaved

Figure 2. Memory layout of a CLA with a vector width of 2 (VW := 2)

To simplify the following illustrations we only use 2 discrete

Γ rates however.

In a sequential implementation of newview(), the nat-

ural way to arrange the data in main memory is shown in

Figure 1 (assuming DNA data with 4 states, 2 Γ rates, and 4

alignment sites). For each alignment site, the CLA contains

2 rate blocks. Each rate block contains 4 probabilities (1 per

state, denoted by A, C, G, and T). Using this memory layout,

the probability values of the states can be read efficiently

from contiguous memory locations to calculate the scalar

products in Equation 1.

This memory layout is used directly in the initial ad hoc

SSE3 and AVX versions of RAxML. The calculation of the

scalar products in the innermost newview() loop can be

directly implemented by using element-wise multiply and

horizontal add operations. However, this approach is only

efficient, if the number of states (e.g., 4) is equal to or

larger than the width of the vector unit. Since we use double

precision floating point numbers this is the case both for

SSE3 (vector width: 2), as well as AVX (vector width: 4)

vector units. In contrast to this, modern GPUs have much

wider vector units. In addition, the width of x86 vector units

is also expected to increase (e.g., the Intel Xeon Phi). Hence,

the initial ad hoc vectorization scheme can no longer be

used for the PLL. Moreover, the manual vectorization for

each model and data type combination proved to be error-

prone and labor-intensive. Thus, we require a more generic

vectorization scheme that is easier to port to new models

and can conveniently be adapted to vector units of arbitrary

length.

In order to use the wider vector units on GPUs, we

introduce a new and more generic, vectorization scheme.

Instead of exploiting parallelism within the innermost loop

iteration of newview(), the new scheme now calculates

a part of the conditional likelihood arrays simultaneously

for multiple sites. We denote this approach as across-

site vectorization. In principle, across-site vectorization is

analogous to the sequential implementation of the PLF: The

actual calculations of the scalar products in the innermost

newview() loop are carried out sequentially. The main

difference is that the scalar products are now being calcu-

lated for multiple sites (i.e., 2 or 4 sites for SSE3/AVX or

more than 64 sites on the GPU) in parallel. In the SSE3

and AVX implementations this parallelism is exploited by

using vector intrinsics. With SSE3 intrinsics, for instance,

the __m128 data type can be interpreted as a vector of

2x64bit double precision floating point values. It replaces

the double data-type and the intrinsic vector operations

_mm_mul_pd and _mm_add_pd are used instead of the *
and + operators for 2x64bit vectors. Corresponding intrinsic

functions exist for most of the built-in C/C++ data types

and arithmetic operations, which yields the implementation

of across-site vectorization relatively straight-forward. We

have previously used a similar scheme for the inter-sequence



vectorization of the PaPaRa 2.0 [20] dynamic programming

algorithm. This simple vectorization scheme can only be

used when the data (i.e., the CLAs) are stored using an

appropriate memory layout. Such a layout needs to allow

for reading the probability values of a specific state (e.g., A)

that belong to neighboring alignment sites from contiguous

memory locations. Since this is not possible using the

standard memory layout (see Figure 1), we introduce an

appropriately adapted and flexible (regarding the vector unit

width) memory layout.

To assess the efficiency of this more generic vectorization

scheme, we implemented it on both CPUs (using SSE as well

as AVX) and GPUs. The major change consists in an adapted

memory layout for the CLAs which now allows to efficiently

exploit across-site parallelism on CPUs and GPUs. Note that,

SSE and AVX instructions currently do not offer efficient

operations for loading data from non-contiguous sites (data

locations) into vector registers (see Figure 1). Generally,

GPUs offer greater flexibility with respect to loading values

from non-contiguous memory locations (e.g., loading the

values corresponding to state A and discrete Γ rate 0 of sites

0, 1, . . . , 32). However, to obtain ’good’ GPU performance,

values should be read from contiguous memory locations

to coalesce read/write accesses and prevent bank conflicts.

We have therefore generalized the CLA memory layout to

store corresponding values from different sites in contiguous

memory. This allows for accessing the data at contiguous

memory locations for the vectorized version of Equation 1.

The memory layout is parameterized by the desired vector

unit width (VW ). For VW := 1, the memory layout cor-

responds exactly to the original memory layout of RAxML

(see Figure 1). The analogous layout for VW := 2 is shown

in Figure 2. As outlined in these figures, corresponding

values from different alignment sites (e.g., state A, discrete

Γ rate 0 of sites 0 and 1) are located at contiguous memory

locations. Therefore, they can directly be loaded into an SSE

register via a single load operation. Given this altered and

adaptive memory layout, implementing a vectorized version

of Equation 1 for sites 0 and 1 becomes straight-forward.

The scheme can, in principle, be extended to arbitrary vector

widths (see Section V).

Note however, that there do exist some limitations. Equa-

tion 1 can only be vectorized for those sites that evolve

according to the same model. In other words, the sites

need to share the same P matrices and the same α shape

parameter that determines the form of the Γ curve. Thus, if

the dataset is partitioned (different parameters for different

parts (e.g., genes) of the alignment are being estimated),

the maximum vector width is limited by the number of sites

that evolve according to the same model. Moreover, it is also

difficult to apply the above scheme to the, otherwise very

efficient, CAT model of rate heterogeneity [18]. Instead of

integrating the likelihood over different rates, it assigns one

rate category (out of typically 25) to each alignment site.

This means that, there are at least 25 different P matrices

and that Equation 1 can only be vectorized across those sites

that evolve according to the same P matrix (rate category).

Hence, devising a generic vectorization scheme for the CAT

model, which nonetheless currently is only implemented in

RAxML and FastTree 2.0 [21], still remains a challenge.

V. GPU IMPLEMENTATION

Our GPU implementation is based on two key perfor-

mance considerations for GPUs.

The first design criterion is that severe performance penal-

ties are induced by frequently transferring large amounts of

data between the CPU and GPU. To this end, we devise

a memory layout strategy that allows to update and store

the CLAs (the main bulk of the memory used for PLF

computations) exclusively on the GPU. We have developed

an OpenCL kernel that implements this strategy. The host

program on the CPU simply orchestrates the tree search and

invoke PLF computations on the CLAs that reside on the

GPU. More specifically, the host program only needs to

pass the memory addresses, that is, the starting positions

of a CLA (corresponding to a node of the tree) in GPU

memory to the GPU. Apart from that, the CPU only needs

to communicate the substantially smaller P matrices and one

additional variable to the GPU. The variable indicates which

PLF function (e.g., newview(), evaluate(), etc.) shall

be executed. The kernel call then returns at most one or

two floating-point values to the CPU. For instance, the

overall log likelihood (when evaluate() is called), or the

first and second derivative of the likelihood function (when

coreDerivative() is invoked). When newview() is

invoked, no values are returned because this function simply

updates the CLAs that reside in GPU memory.

To conduct a realistic performance assessment for a

real application using the PLL, we re-implemented the

search algorithm of RAxML-Light [22] using our library.

Note that, the PLL can, of course, be integrated with any

likelihood-based software such as IQPNNI [23], GARLI [5],

PHYML [3], or DPPDIV [7]. DPPDIV has already been

integrated with PLL. We focus on the RAxML-Light search

algorithm for three reasons: (i) the code has been developed

in our lab and was hence easy to integrate, (ii) RAxML-

Light implements an ad hoc SSE3 and AVX vectorization

that can be compared with the performance of the generic

vectorization scheme and (iii) RAxML-Light uses the cur-

rently probably most efficient likelihood implementation.

The second design criterion is associated with improved

GPU thread performance when threads access contiguous

memory positions in global memory. We address this by

using the CLA memory layout presented in Section IV and

adapting it to GPUs.



A. Kernel Implementation

Here we describe the GPU kernel that implements the

PLF functions described in Section III and that account for

more than 95% of total execution time in RAxML-Light.

In the GPU version of newview(), the three distinct

cases: tip-tip (both children are leaves), inner-tip (one child

is a leave and the other is an inner node), inner-inner (both

children are inner nodes) have been merged into one generic

case (inner inner). This also induces a change in the layout

of the tip vectors which are stored in the form of inner

CLAs, rather than as a look-up table that is indexed by the

raw alignment sequence data (for details see [24]). While

this doubles the memory requirements for storing CLAs, it

simplifies the storage of vectors in GPU memory, as well as

the OpenCL code implementation. Hence, we allocate space

for storing 2 × n − 2 conditional likelihood arrays on the

GPU, where n is the number of taxa in the multiple sequence

input alignment.

Finally, the newview() function also implements a

numerical scaling procedure to avoid numerical underflow in

likelihood computations (for a detailed description, see [24]).

The GPU implementation of evaluate() was straight-

forward. Because of the changed CLA representation at the

tips, we simply had to omit the case where the left or right

node of the branch at which the likelihood is calculated is

a tip.

With respect to branch length optimization, we observed

that, on the GPU, the overhead for invoking the pre-

computation kernel (sumGAMMA()) and storing the results

is larger than re-computing the product of the entries prior

to each invocation of coreDerivative(). Hence, we

merged sumGAMMA() and coreDerivative() into a

single kernel.

Apart from the 2n − 2 full CLAs, we also store the

raw alignment sequence data as well as the so-called

tipVector data structure on the GPU. The reason for this

is that we need to re-calculate the conditional likelihood

arrays at the tips each time we change the values in the

instantaneous substitution matrix Q (e.g., when optimizing

the parameters of the General Time Reversible model of

nucleotide substitution in RAxML-Light), which is required

to calculate P . Note that, changes to Q represent a frequent

operation and are invoked thousands of times when the rates

in the Q matrix are being optimized.

While the values in the tip arrays are normally expected to

be constant, this is not the case for the numerical implemen-

tation of the PLF used in the PLL. In fact, the matrix of left

Eigenvectors is multiplied with the tip probability vectors

prior to any further likelihood calculations. This helps to

save some computations later-on. Each time the values in the

Q matrix are changed this induces a change of the Eigenvec-

tor decomposition. The Eigenvector decomposition is used

to exponentiate Q for obtaining the transition probability

matrix P for a given branch length t (i.e., P (t) = eQt).

Thus, the CLAs at the tips need to be updated accordingly

after changes to the Eigenvector decomposition. However,

transferring n tip vectors from the CPU to the GPU had a

deteriorating effect on performance. Thus, we chose to only

transfer the substantially smaller tipVector variable that

contains the product of the left Eigenvectors with all possible

DNA states (this is the look-up table used in the non-GPU

PLL implementation) from the CPU to the GPU. Once

the tipVector has been received, the new conditional

likelihood arrays can be computed efficiently on the GPU

by using the tipVector and the raw alignment sequence

data. The overhead of re-computing the CLAs at the tips is

negligible; it accounts for less than 1% of total run-time. In

contrast to this, transferring all n CLAs for the tips from

the CPU to the GPU for each change in Q, induced a run

time overhead of up to 70%.

B. GPU Memory Organization

In the following we list the data structures that must be

stored in GPU memory to correctly calculate the likelihood:

• CLAs for the n− 2 inner nodes and n tips.

• The raw sequence alignment data of the tips that is

required for re-assembling the conditional likelihood

vectors at the tips when the Q matrix changes.

• The relatively small tipVector array that is also

required for re-assembling the tip vectors (see above).

• The weight vector that indicates how many times an

alignment site pattern occurs (this is also called site

pattern compression and used in all standard PLF

implementations).

• The diagptable array representing the P ma-

trix/matrices for newview() and evaluate() in-

vocations.

• A globalScaler array of size 2n−2 for storing (and
later-on un-doing) the number of scaling multiplications

to avoid numerical underflow at each node of the tree.

• Buffers to accumulate results, sum the per-site log

likelihoods, and sum over the number of scaling mul-

tiplications.

The memory requirements are dominated by the 2×n−2
CLAs. Under double precision, each array requires sites×
gammarates×4×8 bytes. As mentioned before, the number

of discrete Γ rates is usually set to gammarates := 4.
This allows us to approximate the memory requirements in

advance. The proof-of-concept implementation we present

here assumes that enough memory is available on the GPU.

When this is not the case, it is possible to apply memory

reduction strategies as presented in [8] that trade the lack

of memory by additional computations. Alternatively, the

computations can be split among several GPUs.

C. OpenCL Implementation

OpenCL (Open Computing Language) is an open stan-

dard for parallel programming of heterogeneous systems. It



 0

 0.5

 1

 1.5

 2

 2.5

 3

1024 2048 4096 8192 16384 32768 65536 131072 262144

T
o
ta

l 
S

p
e
e
d
u
p
 v

s
. 

A
V

X
 v

e
rs

io
n

Number of unique patterns

Speedup for RAxML-Light application (AVX is used as reference version)

GPU
AVX-NEW

Figure 3. Speedups for a full application run of RAxML-Light. The
reference is the AVX version with the standard layout.

provides a language (a subset of ISO C99) for software de-

velopers to write portable code on SIMT (Single Instruction,

Multiple Threads) architectures.

The OpenCL Execution Model consists of an application

running on a Host (CPU), which offloads work to one or

more Compute Devices (in our case a GPU). Each compute

device is composed of one or more Compute Units. In

CUDA (Compute Unified Device Architecture), these are

called Streaming Multiprocessors (SM).

A Kernel represents the code for a work-item (thread),

which are the basic units of work. Work-items are grouped

into local work-groups (thread blocks). OpenCL applications

can access various types of memory: Host memory (on the

host CPU), global (visible to all workgroups, e.g. DRAM

on the GPU board), local (shared within a workgroup), and

private (registers per work-item). Global memory is accessed

via 32-, 64-, or 128-byte transactions. To maximize global

memory throughput, it is essential to optimize memory

coalescence and minimize address scatter [25].

In OpenCL, the work-group size corresponds to the num-

ber of threads that are executed per streaming multiprocessor

(SM). After experimenting with several multiples of 32, we

empirically determined that a value of 64 worked best for our

target application. This specific work-group size is optimal

because, at each kernel call, all threads within a block can

read data from contiguous positions in global memory. Thus,

in our configuration we access 64 contiguous states that

evolve according to the same discrete Γ rate category. Our

GPU kernel initializes the tips, and reads/writes the CLAs

according to this data layout (VW := 64).

In order to improve performance, we applied optimization

techniques such as loop unrolling [25], and storing the tran-

sition probabilities matrices and the eigenvectors in shared

memory (local memory for each SM). We also explicitly use

registers to store global variables that are read and written

several times during kernel execution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1024 2048 4096 8192 16384 32768 65536 131072 262144

T
o
ta

l 
S

p
e
e
d
u
p
 v

s
. 

A
V

X
 v

e
rs

io
n

Number of unique patterns

Speedup for main PLL functions (AVX is used as reference version)

GPU-newview()
AVX-NEW-newview()

GPU-evaluate()
AVX-NEW-evaluate()

GPU-derivatives()
AVX-NEW-derivatives()

Figure 4. Speedups for each function of the PLL. The reference is the
AVX version with the standard layout.

VI. EXPERIMENTAL SETUP AND RESULTS

We simulated DNA data sets of different dimensions using

INDELible [26] on random trees under the Jukes-Cantor

model. Initially, we used INDELible (v1.03) to generate

a large alignment of 15 taxa (species) and 900,000 sites.

We then used a ruby script to extract subsets of unique

site patterns from this alignment such as to generate 15-

taxon datasets with distinct numbers of unique sites. Thus,

in these datasets, the number of sites actually corresponds to

the number of distinct alignment patterns which facilitates

the discussion of the results. Note that, using simulated data

is fully sufficient for measuring the performance of the PLL

GPU version.

We executed the default RAxML-Light [22] search al-

gorithm (version 1.0.5) to infer trees on these datasets.

We compared the GPU and AVX implementations (see

Section V) that are based on the new memory layout (see

Section IV) against the fastest serial version of RAxML-

Light using the ad hoc AVX vectorization. The three

code versions only differ with respect to their PLF imple-

mentations (newview(), evaluate(), sumGAMMA(),

verb—coreDerivative()—). As mentioned before, these func-

tions typically account for more than 95% of overall execu-

tion time and for 98% on the largest dataset with 262,144

unique site patterns. We manually instrumented the code

to measure how much time is spent in each function.

The three source codes and test datasets are available at

http://www.exelixis-lab.org/gpu pll hicomb.tar.gz

It is straight-forward to verify code correctness since the

RAxML-Light search algorithm is deterministic for given,

fixed starting trees. Thus, it is sufficient to compare the

resulting tree topologies and log likelihood scores.

To verify the correctness of the numerical scaling proce-

dure, we also generated a dataset with 200 taxa (data not

shown), to force the codes to conduct numerical scaling.

Note that, the number of scaling multiplications is propor-

tional to the number of taxa (see [24] for details).

We executed the AVX versions (standard and new layout)

on an Intel i5-3550 CPU running at 3.30GHz with 8GB



Table I
TOTAL RUN TIMES (IN SECONDS) FOR THE RAXML-LIGHT SEARCH ALGORITHM

Patterns 1024 2048 4096 8192 16384 32768 65536 131072 262144

AVX 2.97 5.76 14.50 25.01 75.81 117.30 300.05 508.45 1503.48

AVX-NEW 3.09 6.20 14.90 25.29 77.23 117.57 302.24 510.82 1506.45

GPU 39.15 40.19 52.75 50.12 90.83 85.46 166.69 246.03 652.90

RAM. The GPU version was executed on the same host

system, which is also equipped with a NVIDIA Tesla C2075

card (448 CUDA cores, 1.15GHz, and 6GB GDDR5 of

memory).

The total runtimes are shown in Table I. We achieved

overall speedups exceeding a factor of two for the longest

test dataset (see Figure 3). The three PLL kernels show

comparable speedups. We observed a maximum speedup

of three for the derivative computation. For newview(),

which consumes the largest fraction of execution time, we

obtained a maximum speedup of 2.01 (see Figure 4).

Overall, the GPU speedups are rather mediocre and dis-

appointing. This is mainly because we are comparing the

GPU code to the probably fastest currently available PLF

implementation that relies on code that has been manually

vectorized and tuned for AVX intrinsics. Thus, the GPU

speedups obtained for DNA data are substantially lower

than those reported in the BEAGLE paper. However, the

speedups reported for BEAGLE compare GPU performance

of BEAST, MrBayes, and GARLI, to plain C and SSE3-

based implementations. Nonetheless, the performance of our

PLL GPU implementation is expected to improve when

models/data with more states are used, because they perform

more computations per data accesses than for DNA data.

Note that, the amount of PLF floating point computations

increases with the squared number of states.

Nonetheless, GPUs can yield a two-fold speedups over

our highly optimized manual AVX implementation. Another

interesting observation is that no performance penalty is

induced by using the more generic vectorization scheme with

AVX instructions.

In the final analysis, it becomes evident that, a hybrid

CPU/GPU implementation making use of all available com-

putational resources represents the best solution, despite

some major challenges regarding load balance.

VII. CONCLUSION AND FUTURE WORK

We presented a GPU implementation for the main func-

tions that are required for Bayesian and ML-based phylo-

genetic inference. This implementation is embedded into a

larger project that aims at developing a portable and scalable

phylogenetic likelihood library. In our approach, we store all

conditional likelihood vectors in the GPU memory to avoid

transferring large amounts of data between the GPU and

the CPU. We have also introduced an alternative layout for

the conditional likelihood vectors, which allows to exploit

a larger number of threads in GPU computations via vector

operations. It also facilitates porting the library to larger x86

vector units that will soon become available.

While the speedups we obtain may appear mediocre, one

must keep in mind that they were obtained in comparison to

the fastest currently available x86 implementation of these

functions. In other words, we report as fair as possible

speedups.

With respect to future work, we plan to fully integrate the

GPU kernel with the PLL and support all models and data

types (e.g., protein data and the CAT model of rate hetero-

geneity). We also intend to develop a hybrid implementation

that can exploit all GPUs and x86 cores of a given system.

We will also explore if the re-computation approach [8], that

trades memory for additional computations can be applied

to GPUs as well. Finally, we will also provide GPU support

for analyzing partitioned datasets, which is already a feature

of the x86 version of the PLL, and adapt our load-balancing

strategies for this scenario.

REFERENCES

[1] J. Felsenstein, “Evolutionary trees from DNA sequences: a
maximum likelihood approach,” J. Mol. Evol., vol. 17, pp.
368–376, 1981.

[2] F. Ronquist, M. Teslenko, P. van der Mark, D. L.
Ayres, A. Darling, S. Hhna, B. Larget, L. Liu,
M. A. Suchard, and J. P. Huelsenbeck, “Mrbayes 3.2:
Efficient bayesian phylogenetic inference and model choice
across a large model space,” Systematic Biology, 2012.
[Online]. Available: http://sysbio.oxfordjournals.org/content/
early/2012/03/02/sysbio.sys029.abstract

[3] S. Guindon, J. Dufayard, V. Lefort, M. Anisimova,
W. Hordijk, and O. Gascuel, “New algorithms and methods
to estimate maximum-likelihood phylogenies: assessing the
performance of PhyML 3.0,” Systematic biology, vol. 59,
no. 3, pp. 307–321, 2010.

[4] A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and mixed
models,” Bioinformatics, vol. 22, no. 21, pp. 2688–2690,
2006.

[5] D. Zwickl, “Genetic Algorithm Approaches for the Phy-
logenetic Analysis of Large Biological Sequence Datasets
under the Maximum Likelihood Criterion,” Ph.D. dissertation,
University of Texas at Austin, 2006.

[6] A. Drummond and A. Rambaut, “Beast: Bayesian evolution-
ary analysis by sampling trees,” BMC evolutionary biology,
vol. 7, no. 1, p. 214, 2007.



[7] T. Heath, M. Holder, and J. Huelsenbeck, “A dirichlet pro-
cess prior for estimating lineage-specific substitution rates,”
Molecular biology and evolution, vol. 29, no. 3, pp. 939–955,
2012.

[8] F. Izquierdo-Carrasco, J. Gagneur, and A. Stamatakis, “Trad-
ing running time for memory in phylogenetic likelihood
computations,” in BIOINFORMATICS, J. Schier, C. M. B. A.
Correia, A. L. N. Fred, and H. Gamboa, Eds. SciTePress,
2012, pp. 86–95.

[9] F. Izquierdo-Carrasco, S. Smith, and A. Stamatakis, “Algo-
rithms, data structures, and numerics for likelihood-based
phylogenetic inference of huge trees,” BMC bioinformatics,
vol. 12, no. 1, p. 470, 2011.

[10] M. Charalambous, P. Trancoso, and A. Stamatakis, “Initial
Experiences Porting a Bioinformatics Application to a Graph-
ics Processor,” in Proc. of the 10th Panhellenic Conference
on Informatics (PCI 2005), 2005, pp. 415–425.

[11] F. Pratas, P. Trancoso, L. Sousa, A. Stamatakis, G. Shi,
and V. Kindratenko, “Fine-grain parallelism using multi-core,
cell/be, and gpu systems,” Parallel Computing, vol. 38, no. 8,
pp. 365–390, 2012.

[12] J. Zhou, X. Liu, D. Stones, Q. Xie, and G. Wang, “Mrbayes
on a graphics processing unit,” Bioinformatics, vol. 27, no. 9,
pp. 1255–1261, 2011.

[13] D. L. Ayres, A. Darling, D. J. Zwickl, P. Beerli, M. T.
Holder, P. O. Lewis, J. P. Huelsenbeck, F. Ronquist, D. L.
Swofford, M. P. Cummings, A. Rambaut, and M. A. Suchard,
“BEAGLE: An Application Programming Interface and High-
Performance Computing Library for Statistical Phylogenet-
ics,” Systematic Biology, vol. 61, no. 1, pp. 170–173, 2012.

[14] M. A. Suchard and A. Rambaut, “Many-core algorithms for
statistical phylogenetics,” Bioinformatics, vol. 25, no. 11, pp.
1370–1376, 2009.

[15] S. Berger and A. Stamatakis, “Accuracy and performance
of single versus double precision arithmetics for maximum
likelihood phylogeny reconstruction,” Parallel Processing and
Applied Mathematics, pp. 270–279, 2010.

[16] A. Stamatakis and M. Ott, “Load Balance in the Phylogenetic
Likelihood Kernel,” in Proceedings of ICPP 2009, 2009.

[17] J. Zhang and A. Stamatakis, “The multi-processor schedul-
ing problem in phylogenetics,” in Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International. IEEE, 2012, pp. 691–698.

[18] A. Stamatakis, “Phylogenetic Models of Rate Heterogeneity:
A High Performance Computing Perspective,” in Proc. of
IPDPS2006, ser. HICOMB Workshop, Proceedings on CD,
Rhodos, Greece, April 2006.

[19] Z. Yang, “Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites,” J. Mol. Evol.,
vol. 39, pp. 306–314, 1994.

[20] S. A. Berger and A. Stamatakis, “PaPaRa 2.0: A
Vectorized Algorithm for Probabilistic Phylogeny-Aware
Alignment Extension; Exelixis-RRDR-2012-5; http://sco.h-
its.org/exelixis/pubs/Exelixis-RRDR-2012-5.pdf,” Heidelberg
Institute for Theoretical Studies, Tech. Rep.,
2012. [Online]. Available: http://sco.h-its.org/exelixis/pubs/
Exelixis-RRDR-2012-5.pdf

[21] M. Price, P. Dehal, and A. Arkin, “Fasttree 2–approximately
maximum-likelihood trees for large alignments,” PLoS One,
vol. 5, no. 3, p. e9490, 2010.

[22] A. Stamatakis, A. J. Aberer, C. Goll, S. A. Smith, S. A.
Berger, and F. Izquierdo-Carrasco, “RAxML-Light: a tool
for computing terabyte phylogenies,” Bioinformatics, vol. 28,
no. 15, pp. 2064–2066, 2012.

[23] B. Minh, L. Vinh, A. Haeseler, and H. Schmidt, “pIQPNNI:
parallel reconstruction of large maximum likelihood phyloge-
nies,” Bioinformatics, vol. 21, no. 19, pp. 3794–3796, 2005.

[24] A. Stamatakis, “Orchestrating the phylogenetic likelihood
function on emerging parallel architectures,” Bioinformatics–
High Performance Parallel Computer Architectures, B.
Schmidt, Ed. CRC Press, pp. 85–115, 2012.

[25] N. Alachiotis, S. Berger, and A. Stamatakis, “Coupling
SIMD and SIMT Architectures to Boost Performance of a
Phylogeny-aware Alignment Kernel,” BMC Bioinformatics,
vol. 13, no. 1, pp. 196+, 2012.

[26] W. Fletcher and Z. Yang, “INDELible: a flexible simulator
of biological sequence evolution.” Molecular biology and
evolution, vol. 26, no. 8, pp. 1879–1888, 2009.


