
The divisible load balance problem and its
application to phylogenetic inference

Kassian Kobert1, Tomáš Flouri1, Andre Aberer1, and Alexandros Stamatakis1,2

1 Heidelberg Institute for Theoretical Studies, Germany
2 Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Postfach

6980, 76128 Karlsruhe

Abstract. Motivated by load balance issues in parallel calculations of
the phylogenetic likelihood function we address the problem of distribut-
ing divisible items to a given number of bins. The task is to balance the
overall sum of (fractional) item sizes per bin, while keeping the maximum
number of unique elements in any bin to a minimum. We show that this
problem is NP-hard and give a polynomial time approximation algorithm
that yields a solution where the sums of (possibly fractional) item sizes
are balanced across bins. Moreover, the maximum number of unique ele-
ments in the bins is guaranteed to exceed the optimal solution by at most
one element. We implement the algorithm in two production-level paral-
lel codes for large-scale likelihood-based phylogenetic inference: ExaML
and ExaBayes. For ExaML, we observe best-case runtime improvements
of up to a factor of 5.9 compared to the previously implemented data
distribution algorithms.

1 Introduction

Maximizing the efficiency of parallel codes by distributing the data in such a way
as to optimize load balance is one of the major objectives in high performance
computing.

Here, we address a specific case of job scheduling (data distribution) which,
to the best of our knowledge, has not been addressed before. We have a list of N
divisible jobs, each of which consists of si atomic tasks, where 1 ≤ i ≤ N , and B
processors (or bins). All jobs have an equal, constant startup latency α, and each
task, regardless of the job it appears in, requires a constant amount of time β to
be processed. Although these times are constant, they depend on the available
hardware architecture, and hence are not known a priori. Moreover, the jobs are
independent of one another. We also assume that processors are equally fast.
Therefore, any task takes time β to execute, independently of the processor it is
scheduled to run on. Any job can be partitioned (or decomposed) into disjoint
sets of its original tasks, which can then be distributed to different processors.
However, each such set incurs its own startup latency α on the processor on
which it is scheduled to run. Thus, a job of k tasks takes time k ·β+α to execute
on any processor. The tasks (even of the same job) are independent of each
other, that is, they can be executed in any order, and the sole purpose of the job

configuration is to group together the tasks that require the same initialization
step and hence minimize the overall startup latency.

Our work is motivated by parallel likelihood computations in phylogenetics
(see [4, 9] for an overview). There, we are given a multiple sequence alignment
that is typically subdivided into distinct partitions (e.g., gene partitions; jobs
in our context). Given the alignment and a partition scheme, the likelihood on
a given candidate tree can be calculated. To this end, transition probabilities
for the statistical nucleotide substitution model need to be calculated (start-up
cost α in our context) for each partition separately because they are typically
considered to evolve under different models. Note that, all alignment sites (job
size) that belong to the same partition have identical model parameters.

The partitions are the divisible jobs to be distributed among processors. Each
partition has a fixed number of sites (columns from the alignment), which de-
note the size of the partition. The sites represent the independent tasks a job
(partition) consists of. Since alignment sites are assumed to evolve independently
in the likelihood model, the calculations on a single site can be performed inde-
pendently of all other sites. Thus, a single partition can easily be split among
multiple processors. Finally, note that, parallel implementations of the phylo-
genetic likelihood function now form part of several widely-used tools and the
results presented in this paper are generally applicable to all tools.

Related work. A related problem is bin-packing with item fragmentation. Here,
items may be fragmented, which can potentially reduce the total number of bins
needed for packing the instance. However, since fragmentation incurs overhead,
unnecessary fragmentations should be avoided. The goal is to pack all items in a
minimum number of bins. For an overview of the fractional bin packing problem
see [5, Chapter 33]. However, in contrast to our problem, the number of bins is not
part of the input but is the objective function. The most closely related domain
of research is divisible load theory (DLT). Here, the goal is to distribute optimal
fractions of the total load among several processors such that the entire load is
processed in a minimal amount of time. For a review on DLT, see [1]. However,
in general DLT can accommodate more complex models, taking into account a
number of factors, such as network parameters or processor speeds. Our problem
falls into the category of scheduling divisible loads with start-up costs (see for
instance [2, 8]). To our knowledge the problem we present has not been solved
before. Finally, there exists previous work by our group on improving the load-
balance in parallel phylogenetic likelihood calculations. There, we considered,
mostly for the sake of code simplicity, that single partitions/jobs are indivisible.
Thus, the scheduling problem we addressed in this work was equivalent to the
’classic’ multi-processor scheduling problem. The paper also provides a detailed
rationale as to why the calculation of transition probabilities (the overhead α)
can become performance-critical [10].

Overview. In Section 2 we formally define two variations of the problem. We
then prove that the problem is NP-hard (Section 3). The main contribution of

this paper can be found in Section 4, where we give a polynomial-time approx-
imation algorithm which yields solutions that assign at most one element more
to any processor (or bin) than the optimal solution. We analyze the algorithm
complexity and prove the OPT+1 approximation in (Section 5). Unless P = NP
[3, 6], no polynomial time algorithm can guarantee a better worst case approxi-
mation. Finally, in Section 6, we present the performance gains we obtain, when
employing our algorithm for distributing partitions in ExaML3 [7]

2 Problem Definition

Assume we have N divisible items of sizes s1, s2, . . . , sN , and B available bins.
Our task is to find an assignment of the N items to the B bins, by allowing an
item to be partitioned into several sub-items whose total size is the size of the
original item, in order to achieve the following two goals:

1. The sum of sizes of the (possibly partitioned) items assigned to each bin is
well-balanced.

2. The maximum load over all bins is minimal with respect to the number of
items added.

In the rest of the text we will use the term solid for the items that are not
partitioned, and fractional for those that are partitioned.

We can now formally introduce two variations of the problem; one where we
only allow items of integer sizes, and one where the sizes can be represented
by real numbers. In the case of integers, the problem can be formulated as the
following integer program.

Problem 1 (LBN) Given a sequence of positive integers s1, s2, . . . , sN and a
positive integer B,

minimize max{
∑N

j=1 xi,j | i = 1, 2, . . . , B }

subject to ∑B
i=1 qi,j = sj, 1 ≤ j ≤ N∑N
j=1 qi,j ≥ bσ/Bc, 1 ≤ i ≤ B∑N
j=1 qi,j ≤ dσ/Be, 1 ≤ i ≤ B

σ =
∑N

i=1 si

0 ≤ qi,j ≤ xi,j · sj, 1 ≤ i ≤ B, 1 ≤ j ≤ N

q ∈ NB×N
≥0

x ∈ {0, 1}B×N

3 Available at http://www.exelixis-lab.org/web/software/examl/index.html

Variable xi,j is a boolean value indicating whether bin i contains part of item
j and if it does, qi,j denotes the amount. By removing the imposed restriction
of integer sizes, and hence allowing for positive real values as the sizes of both
solid and fractional items, we obtain the following mixed integer program.

Problem 2 (LBR) Given a sequence of positive real values s1, s2, . . . , sN and
a positive integer value B,

minimize max{
∑N

j=1 xi,j | i = 1, 2, . . . , B }

subject to ∑B
i=1 qi,j = sj, 1 ≤ j ≤ N∑N
j=1 qi,j = σ/B, 1 ≤ i ≤ B

σ =
∑N

i=1 si

0 ≤ qi,j ≤ xi,j · sj, 1 ≤ i ≤ B, 1 ≤ j ≤ N

q ∈ RB×N

x ∈ {0, 1}B×N

If for some bin i and element j we get a solution with qi,j < sj , we say that
element j is only assigned to bin i partially, or that only a fraction of element j
is assigned to bin i. If qi,j = sj we say that element j is fully assigned to bin i.

3 NP-hardness

We now show that problems LBN and LBR are NP-hard by reducing the well-
known Partition [6] problem. We reduce it to another decision problem called
Equal Cardinality Partition (ECP) that decides whether a set can be broken into
disjoint sets of equal cardinality and equal sum of elements (see Def. 2), which
can be solved by the two flavors of our problem.

Definition 1 (Partition). Is it possible to partition a set S of positive integers
into two disjoint subsets Q and R, such that Q ·∪R = S and

∑
q∈Q q =

∑
r∈R r?

Definition 2 (ECP). Let p, k be two positive integers and S a set of p·k positive
integers. Can we partition S into p disjoint sets S1, S2, . . . , Sp of k elements each,
such that

⋃
· pi=1 Si = S and

∑
s∈Si

s =
∑

s∈Sj
s, for all 1 ≤ i, j ≤ p?

Clearly, if we can solve our original optimization problems LBN and LBR
for any S exactly, we can also answer whether ECP returns true or false for the
same set S. Thus, if we can show that ECP is NP-Complete we know that the
original problems are NP-hard.
To show that ECP is NP-Complete, it is sufficient to show that ECP is in NP,
that is the set of polynomial time verifiable problems, and some NP-Complete
problem (here Partition) reduces to it.

Lemma 1. ECP is NP-Complete.

Proof. The first part, i.e., ECP ∈ NP, is trivial. Given a solution (that is, the
sets S1,. . .,Sp), we are able to verify, in polynomial time to p, that the conditions
for problem ECP hold, by summing the elements of each set.

For the reduction of Partition to ECP consider the set S to be an instance
of Partition. We derive an instance Ŝ of ECP from S, such that Partition(S)
is true iff ECP(Ŝ) is true for 2 bins (that is p = 2). We define Ŝ = S ∪ (a · S) a
set of integers, with a = (1 +

∑
s∈S s) and (a · S) = { a · s | s ∈ S }. Clearly, if

there is a solution for Partition given S, there must also be a solution for ECP
given Ŝ. If Q,R ⊂ S is a solution for Partition, then Q∪ (a ·R), R ∪ (a ·Q) is
a solution for ECP.

Similarly, let Q̂, R̂ be a solution for ECP given Ŝ. Let Q = Q̂∩S, R = R̂∩S,
(a · Q) = Q̂ ∩ (a · S) and (a · R) = R̂ ∩ (a · S). Trivially, it holds that Q =
{ q ∈ Q̂ | q < a }, R = {r ∈ R̂ | r < a} and (a · Q) = Q̂ \ Q, (a · R) = R̂ \ R.
Thus, we obtain Q ∪ R = S and (a ·Q) ∪ (a · R) = (a · S). We also obtain that∑

q∈Q q =
∑

r∈R r (and
∑

q∈(a·Q) q =
∑

r∈(a·R) r). We prove that the equations
hold by contradiction: suppose this was not the case for some solution of ECP,
that is

∑
q∈Q q 6=

∑
r∈R r and hence

∑
q∈(a·Q) q 6=

∑
r∈(a·R) r. By definition,

(a · Q) and (a · R), q/a and r/a are integer values for any q ∈ (a · Q) and
r ∈ (a ·R), and therefore:

|
∑

q∈(a·Q)

q −
∑

r∈(a·R)

r| = |
∑

q∈(a·Q)

a · q/a−
∑

r∈(a·R)

a · r/a|

= a · |

≥1︷ ︸︸ ︷∑
q∈(a·Q)

q/a−
∑

r∈(a·R)

r/a| ≥ a

However,
∑

s∈S s < a. Thus,
∑

q∈Q̂ q 6=
∑

r∈R̂ r which contradicts the assump-

tion of Q̂, R̂ being a solution for ECP(Ŝ,2). Therefore, Partition reduces to
ECP, which means that ECP is NP-Complete. ut

Corollary 1. The optimization problems LBN and LBR are NP-hard.

This follows directly from Lemma 1 and the fact that an answer for ECP can be
obtained by solving the optimization problem.

4 Algorithm

As seen in Section 3, finding an optimal solution to this problem is hard. To
overcome this hurdle, we propose an approximation algorithm running in poly-
nomial time that guarantees a near-optimal solution. For an in-depth analysis
of the complexity of the algorithm, see Section 5.

The input for the algorithm is a list S of N integer weights and the number
of bins B these elements must be assigned to. The idea of the algorithm can be
explained by the following three steps:

1. Sort S in ascending order.

2. Starting from the first (solid) element in the sorted list S, assign elements
from S to the B bins in a cyclic manner (at any time no two bins can have
a difference of more than one element) until any bin can not entirely hold
the proposed next item.

3. Break the remaining elements from S to fill the remaining space in the bins.

Fig. 1 presents the pseudocode for the first two phases, while Fig. 2 illustrates
phase 3. The output of this algorithm is an assignment, list = (list[1], . . . , list[p]),
of –possibly fractional– elements to bins. Each entry in list is a set of triplets
that specify which portion of an integer sized element is assigned to a bin. Let
(j, i, k) ∈ list[l] be one such triplet for bin number l. We interpret this triplet as
follows: bin l is assigned the fraction of element j that starts at i and ends at k
(including i and k).

For the application in phylogenetics, each triplet specifies which portion (how
many sites) of a partition is assigned to which processor. Again, let (j, i, k) ∈
list[l] be one such triplet for some processor l. We interpret this triplet as follows:
processor l is assigned sites i through k of partition j.

If i 6= 1 or k 6= sj (recall sj is the size of element j), we say that element j
is partially assigned to bin i, that is, only a fraction of element j is assigned to

LoadBalance(N,B, S)
B Phase 1 — Initialization
1. Sort S in ascending order and let S = (s1, s2, . . . , sN)

2. σ =
∑N

i←1 si
3. c← dσ/Be
4. r ← c ·B − σ
5. for i← 1 to B do
6. size[b]← 0; items[b]← 0; list[b]← ∅
7. full bins← 0; b← 0;

B Phase 2 — Initial filling
8. for i← 1 to N do
9. if size[b] + si ≤ c then

10. size[b]← size[b] + si
11. items[b] = items[b] + 1
12. Enqueue(list[b], (i, 1, si))
13. if size[b] = c then
14. full bins← full bins + 1
15. if full bins = B − r then c← c− 1
16. else
17. break
18. b← (b+ 1) mod B

Fig. 1. The algorithm accepts three arguments N,B and S, where N is the number of
items in list S, and B is the number of bins

B Phase 3 — Partitioning items into bins
19. low← B; `← B; high← 1; h← 1; add← 0
20. while i ≤ N do
21. while size[`] ≥ c do
22. low← low− 1; `← low
23. while size[h] ≥ c do
24. high← high + 1; h← high
25. if size[h] + add ≥ c then
26. items[h]← items[h] + 1
27. Enqueue(list[h], (i, si − add + 1, si − add− size[d] + c))
28. add← size[h] + add− c
29. size[h]← c
30. full bins← full bins + 1
31. if full bins = B − r then c← c− 1
32. else
33. items[`]← items[`] + 1
34. if size[`] + add < c then
35. size[`]← size[`] + add
36. Enqueue(list[`], (i, si − add + 1, si))
37. add← 0
38. high← high− 1; h← `
39. low← low− 1; `← low
40. else
41. Enqueue(list[`], (i, si − add + 1, si − add− size[d] + c))
42. add← size[`] + add− c
43. size[`]← c
44. full bins← full bins + 1
45. if full bins = B − r then c← c− 1
46. if add = 0 then
47. i← i+ 1; add← si

Fig. 2. Phase 3 of the algorithm

bin i. Otherwise, if i = 1 and k = sj , then the triplet represents a solid element,
i.e., element j is fully assigned to bin i.

For applications that allow any fraction of an integer to be assigned to a bin,
not just whole integer values (that is, problem LBR), we redefine the variable
c, i.e. the maximum capacity of the bins, to be exactly σ/B, without rounding.
Additionally, the output (list) must correctly state which ranges of the elements
are assigned to which bin and not give integer lower and upper bounds. Next,
we give two examples of how LoadBalance works on specific sets of integers.

Example 1. Consider the set {2, 2, 3, 5, 9} and three bins. During initialization
(phase 1) we have c = 7 and r = 0. Phase 2 makes the following assignments:
list[1] = {(1, 1, 2), (4, 1, 5)}, list[2] = {(2, 1, 2)}, list[3] = {(3, 1, 3)}. Adding the
next element of size 9 is not possible since size[2] + 9 = 2 + 9 = 11 > c.
Thus, phase 2 ends. Phase 3 splits the last element of size 9 among bins 2 and

3, and the solution is list[1] = {(1, 1, 2), (4, 1, 5)}, list[2] = {(2, 1, 2), (5, 1, 5)},
list[3] = {(3, 1, 3), (5, 6, 9)}. With max{|list[1]|, |list[2]|, |list[3]|} = 2. This is also
an optimal solution.

Example 2. Consider the set {1, 1, 2, 3, 3, 6} and two bins. During the initial-
ization (phase 1) we have c = 8 and r = 0. Phase 2 generates the following
assignments: list[1] = {(1, 1, 1), (3, 1, 2), (5, 1, 3)}, list[2] = {(2, 1, 1), (4, 1, 3)}.
The last element of size 6 can not be fully assigned to bin 2, thus phase 2
terminates. Finally, phase 3 splits the last element of size 6 among the two
bins, and the solution is list[1] = {(1, 1, 1), (3, 1, 2), (5, 1, 3), (6, 1, 2)}, list[2] =
{(2, 1, 1), (4, 1, 3), (6, 3, 6)}. We get max{|list[1]|, |list[2]|} = 4. However, an opti-
mal solution list?1 = {(1, 1, 1), (2, 1, 1), (6, 1, 6)}, list?2 = {(3, 1, 2), (4, 1, 3), (5, 1, 3)}
with max{|list?1|, |list?2|} = 3 exists.

As we can see in Example 2, algorithm LoadBalance fails to find the
optimal solution in certain cases. However in the next section we show that the
difference of 1, as observed in Example 2, represents the worst case scenario.

5 Algorithm analysis

We now show that the score obtained by algorithm LoadBalance, for any
given set of integers and any number of bins, is at most one above the optimal
solution. We then give the asymptotic time and space complexities.

5.1 Near-optimal solution

Before we start with the proof, we make three observations associated with the
algorithm that facilitate the proof. We use the same notation as in the description
of the algorithm. That is, items[i] indicates the number of items in bin i, size[i]
the sum of sizes of items in bin i, and list[i] is a list of records per item in bin i,
describing which fraction of the particular item is assigned to bin i.

Observation 1 During phase 2 of algorithm LoadBalance, for any two bins
j and i, it holds that size[i] > size[j], such that items[i] = items[j] + 1.

The list of integers was sorted in Phase 1 of the algorithm to a non-decreasing
sequence. Hence, any item added to a bin during the i-th cyclic iteration over
bins, must be smaller or equal to an item that is added during iteration i + 1.
Following directory from Observation 1, we obtain the next observation.

Observation 2 For all bins i and j during phase 2 of algorithm LoadBalance,
it holds that items[j] ≤ items[i] + 1.

Observation 3 Phase 3 appends at most 2 more (fractional) items to a bin.

Any remaining (unassigned) item of size s in this phase satisfies the condition
size[j]+s > c, for any bin j and capacity c as computed in Fig. 1. Therefore, each
bin will be assigned at most one fractional item that does not fill it completely,
and one new element that is guaranteed to fill it up.

Lemma 2. Let OPT(S,B) be the score for the optimal solution for a set S dis-
tributed to B bins. Let list be the solution produced by algorithm LoadBalance
for the same set S and B bins. Then it holds that max{ |list[i] | i = 1, 2, . . . , B } ≤
OPT(S,B) + 1

Proof. Let ĵ be the bin that terminates phase 2. That is, ĵ is the last bin con-
sidered for any assignment in phase 2. After phase 2, if there exists a bin j with
items[j] = items[ĵ]+1 we get, by Observation 1 and the pigeonhole principle, that
OPT(S,B) ≥ items[ĵ]+1. Otherwise, if no such bin exists, OPT(S,B) ≥ items[ĵ].
Let K be the number of unassigned elements at the beginning of phase 3. Let
J be the number of bins j with items[j] = items[ĵ]. We distinguish between
three cases. First assume that items[j] = items[ĵ] (after phase 2) for all bins
j and K > 0. Clearly, OPT(S,B) ≥ items[ĵ] + 1. By observation 3 we know
that items[j] ≤ items[ĵ] + 2 (after phase 3). Thus the lemma holds for this case.
Now consider K > J and items[j] 6= items[ĵ] for some bin j, that is, there
are more unassigned elements than there are bins with only items[ĵ] elements
assigned to them. By the pigeonhole principle, OPT(S,B) ≥ items[ĵ] + 2. By
observation 3 we get that items[j] ≤ items[ĵ] + 1 + 2 = items[ĵ] + 3 for all j.
Thus the lemma holds for this case as well. For the last case assume K ≤ J and
items[j] 6= items[ĵ] for some bin j. After a bin is assigned a fractional element
that does not fill it completely, it is immediately filled up with the next element.
Since preference is given to any bin j with items[j] = items[ĵ] and there are at
least as many such bins as remaining elements to be added (K ≤ J), we get that
items[j] ≤ items[ĵ]+2. Since we have seen above that OPT(S,B) ≥ items[ĵ]+1,
the lemma holds. As this covers all cases, the lemma is proven. ut

5.2 Run-time

The runtime analysis is straight forward. Phase 1 of the algorithm consists
of initializing variables, sorting N items by size in ascending order and com-
puting their sum. Using an algorithm such as Merge-Sort, Phase 1 requires
O(N log(N)) time. Phase 2 requires O(N) time to consider at most N items,
and assign them to B bins in a cyclic manner. Phase 3 appends at most 2 items
to a bin (see Observation 3), and hence has a time complexity of O(B). This
yields an overall asymptotic run-time complexity of O(N log(N)+B). Note that,
if we are already given a sorted list of partitions, the algorithm runs in linear
time O(N +B). Finally, LoadBalance requires O(B) space due to the arrays
items, size and list, that are each of size B.

6 Practical Application

As mentioned before, the scheduling problem arises for parallel phylogenetic like-
lihood calculations on large partitioned multi-gene or whole-genome datasets.
This type of partitioned analyses represent common practice at present. The
number of multiple sequence alignment partitions, the number of alignment sites

#partitions

#c
ha

ra
ct

er
s

10

20

50

100

200

500

1000

2000

5000

24 36 48 72 96 144 192 288 384

Fig. 3. Number of characters/sites in each partition for the partitioning schemes.

per partition, and the number of available processors are the input to our algo-
rithm. The production-level maximum likelihood based phylogenetic inference
software ExaML for supercomputers implements two different data distribution
approaches: The cyclic data distribution scheme that does not balance the num-
ber of unique partitions per processor, but just assigns single sites to processors
in a cyclic fashion. The second approach is the whole-partition data distribution
scheme. Here, the individual partitions are not considered divisible and are as-
signed monolithically to processors using the longest processing time heuristic
for the ’classic’ multi-processor scheduling problem [10]. This ensures that the
total and maximum number of initialization steps (substitution matrix calcula-
tions) is minimized, at the cost of not being balanced with respect to the sites
per processor. Nonetheless, using this scheme instead of the cyclic distribution
already yielded substantial performance improvements. In order to evaluate the
new distribution scheme, we compare it to these two previous schemes, in terms
of total ExaML runtime. Note that, our algorithm has also been implemented
in ExaBayes4 which is a code for large-scale Bayesian phylogenetic inference.

6.1 Methods

We performed runtime experiments on a real-world alignment. The alignment
is made of 144 species and 38 400 amino acid characters5 used the alignment to
create 9 distinct partitioning schemes with an increasing number of partitions.
For each scheme, partition lengths were drawn at random, while the number of
partitions per scheme was fixed to 24, 36, 48, 72, 96, 144, 192, 288, 384, and
768, respectively. To generate n partition lengths, we drew n random numbers
x1, . . . , xn from an exponential distribution exp(1) + 0.1. For a partition p, the
value of xp/

∑
i=1..n xi then specifies the proportion of characters that belong to

partition p. The offset of 0.1 was added to random numbers to prevent partition
lengths from becoming unrealistically small, since the exponential distribution
strongly favors small values. Fig. 3 displays the distributions of the partition

4 Available at http://www.exelixis-lab.org/web/software/exabayes/index.html
5 Data from the 1KITE (www.1kite.org) project.

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

 25000

0 48 96 144 192 240 288 336 384

E
x
ec

u
ti

o
n
 t

im
e

[s
]

Partitions [-]

LoadBalance algorithm
cyclic

whole-partition

(a) Runtimes on 24 cores.

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

 25000

0 48 96 144 192 240 288 336 384

E
x
ec

u
ti

o
n
 t

im
e

[s
]

Partitions [-]

LoadBalance algorithm
cyclic

whole-partition

(b) Runtimes on 48 cores.

Fig. 4. Runtime comparison for ExaML employing algorithm LoadBalance, the
cyclic data distribution scheme, or the whole-partition data distribution scheme.

lengths for each of the 9 partition schemes. As expected, partition lengths are
distributed uniformly on the log-scale.

We executed ExaML using 24 and 48 processes, respectively, to assess per-
formance with our new data distribution algorithm and compare it with the
cyclic site and whole-partition data distribution performance. We used a cluster
equipped with Intel SandyBridge nodes (2×6 cores per node) and an Infiniband
interconnect. Thus, a total of 2 nodes was needed for runs with 24 processes and
4 nodes for runs with 48 processes (inducing higher inter-node communication
costs). In Fig. 4.b, the run-times for the whole-partition distribution approach
with less than 48 partitions are omitted, since they are identical to executing the
runs on 24 processes. The reason is that this method does not divide partitions
and thus, in case the number of partitions is smaller than the number of available
processors, the extra processors will remain unused.

6.2 Results

As illustrated by Fig. 4, with algorithm LoadBalance ExaML always runs at
least as fast as the two previous data distribution strategies with one minor ex-
ception. Compared to the cyclic data distribution, LoadBalance is 3.5× faster
for 24 processes and up to 5.9× faster for 48 processes. Using LoadBalance,
ExaML requires up to 3.6× less runtime than with the whole partition distribu-
tion scheme for 24 processes and for 48 processes the runtime can be improved by
a factor of up to 3.9×. For large numbers of partitions, the runtime of the whole
partition distribution scheme converges against the runtime of LoadBalance.
This is expected, since by increasing the number of partitions we break the align-
ment into smaller chunks and the chance of any heuristic to attain a near-optimal
load/data distribution increases. However, if the same run is executed with more
processes (i.e., 48 instead of 24), this break-even point shifts towards a higher
number of partitions, as shown in Fig. 4.

The results show that, cyclic data distribution performance is acceptable
for many processes and few partitions, whereas monolithic whole-partition data
distribution is on par with our new heuristic for analyses with few processes and
many partitions. Both figures show, that there exists a region where neither of the
previous strategies exhibits acceptable performance compared to LoadBalance
and that this performance gap widens, as parallelism increases.

Finally, employing LoadBalance, ExaML executes twice as fast with 48
processes than with 24 processes and thus exhibits an optimum scaling factor
of about 2.07 in all cases. For comparison, under the cyclic data distribution,
scaling factors ranged from 1.24 to 1.75 and under whole partition distribution,
scaling factors ranged from 1.00 (i.e., no parallel runtime improvement) to 2.04.
The slight superlinear speedups are due to increased cache efficiency.

7 Conclusion

We have introduced an approximation algorithm for solving a NP-hard schedul-
ing problem with an acceptable worst-case performance guarantee. This theo-
retical work was motivated by our efforts to improve parallel efficiency of phy-
logenetic likelihood calculations. By implementing the approximation algorithm
in ExaML, a dedicated code for large-scale maximum likelihood-based phyloge-
netic analyses on supercomputers, we show that (i) the data distribution is near-
optimal, irrespective of the number of partitions, their lengths, and the number
of processes used and (ii) substantial run time improvements can be achieved,
thus saving scarce supercomputer resources. The data distribution algorithm is
generally applicable to any code that parallelizes likelihood calculations.

References

1. Bharadwaj, V., Ghose, D., Robertazzi, T.: Divisible load theory: A new paradigm
for load scheduling in distributed systems. Cluster Computing 6(1), 7–17 (2003)

2. B lażewicz, J., Drozdowski, M.: Distributed processing of divisible jobs with com-
munication startup costs. Discrete Appl. Math. 76(1-3), 21–41 (Jun 1997)

3. Cook, S.A.: The complexity of theorem-proving procedures. STOC ’71 Proceedings
of the third annual ACM symposium on Theory of computing pp. 151 – 158 (1971)

4. Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2003)
5. Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics.

Chapman & Hall/CRC (2007)
6. Karp, R.: Reducibility among combinatorial problems. Complexity of Computer

Computations pp. 85–103 (1972)
7. Stamatakis, A., Aberer, A.J.: Novel parallelization schemes for large-scale

likelihood-based phylogenetic inference. In: IPDPS. pp. 1195–1204 (2013)
8. Veeravalli, B., Li, X., Ko, C.C.: On the influence of start-up costs in scheduling

divisible loads on bus networks. Parallel and Distributed Systems, IEEE Transac-
tions on 11(12), 1288–1305 (Dec 2000)

9. Yang, Z.: Computational Molecular Evolution. Oxford University Press (2006)
10. Zhang, J., Stamatakis, A.: The multi-processor scheduling problem in phylogenet-

ics. In: IPDPS Workshops. pp. 691–698. IEEE Computer Society (2012)

