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Abstract.

Motivation: While there exists a plethora of sequencing error correction tools, the field
is still lacking a generalized modular framework for this task. Especially wetlab- and run-
dependent error profile characteristics are often ignored by current sequencing error cor-
rection methods. Many sequence correction tools ignore sequence-specific errors and do not
explicitly model the G/C coverage bias of sequencers. Encapsulating this functionality in
separate, user-friendly modules will facilitate the development of future sequencing error
correction tools.
Results: We compute expected k-mer counts under an idealized sequencing model and
infer run-dependent median G/C coverage biases by counting k-mers in the read dataset
and comparing the observed counts with their expected values. We classify k-mers into un-
trusted, unique, and repetitive. We correct substitution, insertion, and deletion errors and
handle repetitive regions by locally and adaptively increasing the k-mer size in a read. Our
error correction approach introduces less new errors (false positives) than other tools, but
also corrects less errors in total. The main purpose of our toolkit is to simplify the design
and evaluation of future error correction approaches.
Availability: SeqCorrect is implemented in C++ and is available for download at
https://github.com/lutteropp/SeqCorrect under the GNU GPL-3.0 license.
Contact: sarah.lutteropp@h-its.org, alexandros.stamatakis@h-its.org

1 Introduction

While there already exist numerous error correction tools, there is still a need for an unified
correction approach that is easy to extend and to adapt to the user’s needs [4]. In this work,
we present a re-engineered version of the sequencing error correction toolkit introduced in [6].
While most components remain unchanged, we modified and improved the error correction and
evaluation components of our software (see Figure 3).

https://github.com/lutteropp/SeqCorrect
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Fig. 1: The modular structure of our toolkit. By encapsulating technology-specific characteristics
in the Error Profile Unit and the Coverage Bias Unit, the error correction algorithm itself can
remain technology-agnostic.

2 Coverage Bias and K-mer Classification

Based on its expected count in the (unknown) genome, we classify a k-mer into either being
UNTRUSTED (0 occurrences), TRUSTED (1 occurrence), or REPETITIVE (> 1 occurrences).
We compute the expected count of a given k-mer under an idealized sequencing setting (which we
call the Perfect Uniform Sequencing (PUS) Model), and distinguish between linear and circular
genomes (see Figure 2). Estimated k-mer counts in idealized sequencing settings have already been
computed before by Schulz et al. [11], but they do not distinguish between linear and circular
genomes. In real sequencing datasets, the reads can contain artificial DNA sequences which do not
originate from the sequenced genome. For example, due to technical restrictions, reads obtained
by the Illumina technology contain adapter sequences.

Fig. 2: The Perfect Uniform Sequencing Model describes an idealized sequencing setting.

We assume that reads are independent from each other and each read has the same probability
to cover a given area of k consecutive bases in the genome. We can compute the expected coverage
of a unique k-mer under our PUS model, using a binomial distribution. Let (li, ni)i=1,...,m be the
distribution of read lengths. An entry (li, ni) means that there are ni reads of length li in the
dataset. Let P(l, k) be the probability that a read of length l covers a given unique k-mer. This
gives us the expected count

covexpected(k) =

m
∑

i=1

ni ∗ P(li, k) ∗ (1− P(li, k))

Let N be the estimated genome size. In case of a circular genome, we obtain

P(l, k) =
l − k + 1

N
.

For a linear genome, the expected number of reads depends on the position of the k-mer in the
genome. As this is not known, we assume that it is equally likely for the k-mer to occur at any



position in the genome. We obtain

P(l, k) =
(l − k) ∗ (N − l) + 1

(N − k + 1)(N − l + 1)
.

Since the assumption of uniform coverage does not hold in reality, we explicitly model the
G/C-coverage bias. The G/C-content of a k-mer is defined as

gc(k-mer) :=
Number of G or C bases in the k-mer

Total number of bases in the k-mer
.

Thus, for size k, there are k+ 1 possible G/C-contents in total. For each G/C-content and size k,
we compute the median coverage bias of all k-mers with the given G/C-content, as in the EDAR
paper [14]. For each k-mer large enough such that it is likely to appear at most once in the genome,
we compute it’s bias as

bias(k-mer) =
covobserved(k-mer)

covexpected(k)
.

Then, we define the median coverage bias bias(k, c) for a given size k and a given G/C-content c
as the median bias of all k-mers with G/C-content c in the dataset.

For classifying a k-mer (UNTRUSTED, TRUSTED, REPETITIVE), we first transform its observed
count in the read dataset into a bias-corrected count. Then, we compare the bias-corrected count
with the expected count for the k-mer. We define the bias-corrected count of a k-mer as

covbias-corrected(k-mer) :=
1

bias(k, gc(k-mer))
∗ covobserved(k-mer).

Then, we use the following classification rule (with µ := covexpected(k) and x := covbias-corrected(k-mer)):

type(k-mer) =











UNTRUSTED , if x < 0.5 ∗ µ

TRUSTED , if 0.5 ∗ µ ≤ x ≤ 1.5 ∗ µ

REPETITIVE , if x > 1.5 ∗ µ











3 Error Correction Approach

For correcting sequencing errors, we distinguish between base-errors and gap-errors (see Figure 3).
An erroneous base can either occur due to an insertion or a substitution of A, C, G, or T. An
erroneous gap is caused by a deletion of one or more bases.

Fig. 3: A base-error at position i refers to the base at position i, whereas a gap-error at position i

refers to the gap after position i in the read.

In order to identify the erroneous positions in the read, we count how many UNTRUSTED
extended k-mers cover each base in the read (see Figure 4). For each position, we extend a k-mer
by increasing k, base by base, until we find the smallest k′-mer starting at this position which is
not being classified as REPETITIVE. We also stop the extension if the end of the read is reached.
If the k′-mer is classified as UNTRUSTED, we increase the count for the positions covered by this
k′-mer, this is, positions i to i+ k′ − 1 in the read.



Fig. 4: Positions in the read which are covered by a high number of untrusted k-mers are more
likely to be erroneous.

We obtain correction candidates by trying to apply a single base- or gap-error to the read
sequence, starting from positions which are covered by the highest number of UNTRUSTED k-mers
in the read. We accept a correction only if the correction candidate is unambiguous and all k-mers
covering the presumably erroneous position become TRUSTED after correction (see Figure 5).

Fig. 5: Given a value k and a position i, we only accept a correction candidate for i if it is
unambiguous and all extended k-mers starting from i− k to i get classified as TRUSTED.

4 Sequence-Specific Error Profile

Fig. 6: A motif is a short DNA-sequence surrounding an erroneous position in a read.

In Illumina MiSeq reads, a GGC motif (see Figure 6) increases the likelihood of a substitution
error to occur [10]. Shin and Park detect motifs which occur more or less frequently than expected
around an error by computing Z-Scores [12]. A positive Z-Score means that an error occurs more
frequently than expected within a given motif, while a negative Z-Score means that it occurs less
often than expected. Shirn and Park limit their observations to cases where an error occurs exactly
in the middle of a motif. We extended their approach by also computing Z-Scores for motifs where
the error does not occur exactly in the middle of the motif. To this end, we need to carry out a
case distinction that also considers the extreme cases where the error occurs at the first or last
base of the motif. For details, see our previous work [6].

5 Evaluation by Mapping to Reference

We evaluate the corrected reads from both, simulated datasets and genome-resequencing datasets
by mapping them to the reference genome which is known in these cases. We detect errors by
mapping the uncorrected original reads to the reference genome, using the widely-used bwa-mem

alignment tool [5]. For detecting the modifications applied by the error correction algorithm,
we align each corrected read with its corresponding original read using the Needleman-Wunsch



algorithm. We apply this procedure instead of directly tracking corrections because this facilitates
comparison with other error correction tools. Using this approach no additional information ,other
than the original read dataset and the set of corrected reads is required.

After identifying the errors in the original read set as well as the corrected read set, we compute
the following evaluation metrics:

– Confusion matrices for base-errors and gap-errors
– F-Scores for all error types
– Unweighted average F-Scores for base-errors and gap-errors
– NMI (Normalized mutual information [13])-Scores for base-errors and gap-errors
– The number of discovered, confused, and newly introduced errors

We use analogous metrics for evaluating the k-mer classification.

6 Implementation

The toolkit is implemented in C++11. For counting k-mers, we use the succinct FM-index imple-
mentation by Gog et al. [2]. Reads are parsed with the SeqAn library [1].

7 Experimental Results

We evaluated our toolkit with a simulated Ebola Illumina dataset and a set of empirical Escherichia
coli str. K-12 substr. MG1655 Illumina sequencing reads (accession number SRR396536). We
preprocessed the empirical Illumina dataset by removing adapter sequences using the cutadapt [8]
tool.

7.1 K-mer Classification

For both datasets, we chose a value for k such that a randomly selected k-mer has 1 percent
probability to appear in a random genome sequence of size N . We used the formula from the
Quake [3] assembler for choosing k:

k ≈
log(200 ∗N)

log(4)
.

This gave us k = 11 for the simulated Ebola Illumina dataset and k = 15 for the empirical
E.coli Illumina dataset.

In the simulated Ebola Illumina dataset, we correctly identify all untrusted and all repetitive
11-mers (see Table 1). While our k-mer classification works perfectly in the simulated dataset, the
empirical dataset implies that simply using the median G/C coverage bias values is not sufficient
for canceling out the effects of coverage bias on k-mer classification (see Table 2). The median
coverage bias plots we obtain (see Figures 7 and 8) show decreasing coverage of G/C-rich k-mers
in both the simulated and the empirical dataset.

Simulated Dataset

UNTRUSTED TRUSTED REPETITVE
UNTRUSTED 100 % 0 % 0 %
TRUSTED 0.54 % 99.29 % 0.17 %

REPETITIVE 0 % 0 % 100 %

Table 1: Confusion matrix for 11-mer classification in the simulated Ebola Illumina dataset.



Fig. 7: Median coverage biases for 11-mers in the simulated Illumina dataset.

Empirical Dataset

UNTRUSTED TRUSTED REPETITVE
UNTRUSTED 89.8355 % 1.20574 % 8.9588 %
TRUSTED 2.3638 % 76.139 % 21.4972 %

REPETITIVE 0.0269554 % 7.77019 % 92.2029 %

Table 2: Confusion matrix for 15-mer classification in the real Ebola Illumina dataset.



Fig. 8: Median coverage biases for 15-mers in the real Illumina dataset.

7.2 Error Correction

Using our evaluation tool, we compared our current error correction approach to our previous
work [6], the Fiona tool [11], the Pollux tool [7], and the Hybrid SHREC tool [9] on the simulated
dataset. Our results show that our error correction approach corrects less errors than current state-
of-the-art error correction methods (see Figure 9). Compared to our previous work, our updated
error correction approach introduces less new errors (see Figure 10).



Fig. 9: Percentage of true errors fixed by our previous work, our current work, and the state-of-
the-art error correction tools Fiona, Pollux, and HShrec.

Fig. 10: Total number of newly introduced errors by our previous work, our current work, and the
state-of-the-art error correction tools Fiona, Pollux, and HShrec.

7.3 Error Profile

Figure 11 shows the sequence-specific errors we encountered in the simulated and in the empirical
dataset. For example, the motif GGG in the empirical dataset shows a high correlation with a
substitution error (A → G) in the third base of the motif (the corrected motif would be GGA). Our
results further show that the simulated dataset does not express a high amount of sequence-specific
errors as the Z-scores are close to zero.



Fig. 11: Motifs that are highly associated with the occurrence of sequencing errors. The erroneous
base is highlighted in bold.

8 Conclusion and Future Work

During the development process, we observed that adaptively extending k-mers improves our
ability to handle repetitive regions and thus, the number of miscorrections is reduced. Moreover,
instead of correcting each untrusted k-mer in a read that is isolated from the others, it turned out
to be advantageous to consider all (extended) k-mers affected by a correction.

Nevertheless, a substantial research effort is still required for developing an universal sequencing
error correction toolkit.

Improvements to k-mer classification:

– Instead of arbitrarily selecting cutoff values, apply the traditional, global cutoff-value approach
for k-mer classification of bias-corrected counts (instead of observed counts as it is usually
done).

– Use more complex models to infer the coverage bias of a given k-mer in a read. For example,
infer a read-based coverage bias by taking the average coverage bias of all k-mers in a read
into account.

– Speed up median coverage bias inference.
– Extend the approach to also work with non-haploid genomes and metagenome data.

Improvements to error correction:

– When correcting, allow for more than one error in a k-mer to occur. This is the reason why at
present several errors are not corrected, as they are located close to each other within a read.



– Add an option for quality-based read-trimming.
– Take into account other reads containing a given k-mer.
– Provide non-kmer-based error correction approaches.
– Improve handling of multi-base deletion errors.
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