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ABSTRACT

Motivation: Likelihood-based methods for placing short read
sequences from metagenomic samples into reference phylogenies
have been recently introduced. At present, it is unclear how to align
those reads with respect to the reference alignment that was deployed
to infer the reference phylogeny. Moreover, the adaptability of such
alignment methods with respect to the underlying reference alignment
strategies/philosophies has not been explored. It has also not been
assessed if the reference phylogeny can be deployed in conjunction
with the reference alignment to improve alignment accuracy in this
context.

Results: We assess different strategies for short read alignment
and propose a novel phylogeny-aware alignment procedure. Our
alignment method can improve the accuracy of subsequent
phylogenetic placement of the reads into a reference phylogeny
by up to 5.8 times compared to phylogeny-agnostic methods. It
can be deployed to align reads to alignments generated by using
fundamentally different alignment strategies (e.g., PRANK,. ¢ versus
MUSCLE).

Availability: ht t p: / / ww. exel i xi s-1 ab. org/ software. ht m
Contact: Simon.Berger@h-its.org, Alexandros.Stamatakis@h-its.org

1 INTRODUCTION

Currently, bioinformatics is facing two challenges: theany-
core revolutionand thebiological data avalanchehat is driven
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Fig. 1. (A) General scheme of the QS alignment procedure. (B) Matchi
QS against an ancestral state vector.

is based on a fixedhultiple reference alignmen(RA) of the full
length sequences in the RT (Fig. 1).

Phylogenetic placement algorithms like the EPA or pplacarkw
by inserting and removing again one short read at a time into
different edges (branches) of the RT. Thereby, they strive t
find the optimal score of the extended (by one taxon) trees in
order to individually determine the best insertion edge dach
short read. The likelihood-based scoring of alternativertstead
insertion positions in EPA and pplacer is conducted underdstrd

by novel wet-lab sequencing techniques. In a single runsethe models of nucleotide substitution (e.g., generalized tieversible
new sequencing techniques can generate between hundreds mbdel using thel’ model of rate heterogeneity (GTR: Yang,
thousands up to several millions of short DNA reads with a1994)). The accuracy of such a likelihood-based placemént o
length ranging between 30 to 450 nucleotides (Karow, 2010)reads depend upon the multiple sequence alignment, thailsent

One important application of next-generation sequenciethods
is in-vivo sampling of microbial communities (e.g.,

the RA and the short sequence reads (henceforth denoted as

in the query sequences (QS)). Therefore, a prerequisite for ghyletic

human gut (Turnbauglet al, 2008) or on human hands (Fierer placement algorithms is, that the QS need to be aligned to the
et al, 2008)). For phylogenetic analysis of such meta-genomicRA (Fig. 1A), before conducting a placement run. We investg

environmental samples, new likelihood-based methods asche
Evolutionary Placement Algorithm (EPA) (Bergatral,, 2011; Stark

the problem of aligning short reads to a given referencenaiient
and compare alignment quality of HMMALIGN (Eddy, 1998) to

etal, 2010) and pplacer (Matset al,, 2010) have recently become a new phylogeny-aware short read alignment method by mefans o

available. These new placement algorithms help to estalttie

provenance of the anonymous and diverse environmentallsahp

likelihood-based phylogenetic QS placement accuracy.
The most straight-forward approach to align QS with the RA

short reads by means of assigning the reads to a given —fixed—{containing full length reference sequences) is to simpiyoute

reference phylogeny. The reference phylogeny is a fullpluesl
(strictly bifurcating)unrooted phylogenetic reference tr@RT) that

*to whom correspondence should be addressed

a new multiple sequence alignment (MSA) from scratch cosinyi
the sequences in the Rihdthe QS (e.g., using MUSCLE (Edgar,
2004), MAFFT (Katohet al.,, 2005), or PRANK r (Loytynoja and
Goldman, 2008)). Because of the extremely large and camtisiy
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growing number of QS, this de-novo alignment approach can b ALGORITHM

computationally prohibitive. PaPaRa is a novel method for short read alignment againséa fix
Alternatively, one can keep the existing (potentially maliyl  reference MSA (RA) and the corresponding phylogeneticrestee
curated.) RA fi>.<ed, and only align the QS with respect to thisiee (RT). The underlying idea of PaPaRa is to align the Q#haga
RA, using dedicated QS alignment methods. One such methoghe ancestral state vector of each edge in the RT. Thesetaaices
for aligning QS with respect to a RA is implemented in the giate sequences are conceptually similar to the profiled irse
HMMER (Eddy, 1998) tool-suite. HMMER initially builds a pii®  ymMER. However, we do not use a probabilistic model becadse o
Hidden Markov Model (HMM) from the RA. Thereafter, the QS are prohibitive run times (see below). A key difference to HMMIGN
gligned against the.profile-HMM that represents the RA. HMME g that, in our approach we derive one profile per edge (bjanthe
implements a dedicated method, HMMALIGN that allows for gt g opposed to the single, monolithic profile that represthe
aligning multiple QS (one at a time) against tfiged profile-  \yhgle RA in HMMALIGN. Thus, given an RT withr taxa,m sites,
HMM of the RA. HMMALIGN will then output an alignment andq QS, we need to execut@(rq) alignment steps 0P (rgm?)
that contains the RA and the QS that have been aligned withynerations. Note thatg is typically significantly larger than-.
respect to the profile-HMM of the RA. Note that, HMMALIGN  gecause of this high time complexity, we also introduce afro
frequently also modifies the RA by inserting gaps, if needtlen  of.concept parallelization. The ancestral state vectmsised here,
using a profile-HMM, the entire RA is represented by a mohalit  ,rqvide two different types of information: the ancestredjsence

—flat— probabilistic profile that does not use the phylogenet pqfile and a tree-derived gap signal (see following parstush
information of the RT. MUSCLE and MAFFT offer similar optisn

to align sequences (in our case QS) against a monolithiclgrofi Ancestral Sequence Profikfter reading the input data, our
that is derived from an existing RA. It has already been shthvan  algorithm visits the2r — 3 edges of the RT by means of a depth-first
QS alignment using HMMALIGN performs reasonably well with tree traversal, starting at an arbitrary terminal edgeiteptb a tip.
respect to phylogenetic placement accuracy (Beegeal, 2011; At each edge, we compute the parsimony state-vectors (&itdh
Matsenet al, 2010). However, depending on the specific alignmentMargoliash, 1967; Sankoff, 1975) of the RT at each end of tuyee
Strategy/ph”osophy dep|oyed to generate the RA’ bettgnmlent The Signal from those two state-vectors is then Combinedgusi
quality (as quantified by QS placement accuracy), can beewetti ~ Parsimony, to obtain the ancestral parsimony state for aginary
by incorporating the phylogenetic signal of the RT into th& Q root-node located on the current insertion edge (Fig. 2).07¢A
alignment process. Hence, we mainly focus on adaptabifi@®  data, every edgein the RT will thus be represented by a parsimony
alignment methods to the underlying, implicit RA structure state vectord, = Ay,..., Ay, where the individuald; are the
We present PaPaRa (PArsimony-based Phylogeny-Aware shoP@rsimony states for each alignment sitef the RA. Each entryl;,
Read Alignment), a novel, phylogeny-aware method for QSis a bit-vector; each bit corresponds to a character in theesee
alignment. To assess PaPaRa performance, we systenyaticaftlphabet (see Fig. 1B). For DNA data, a bit vector at a sitan
evaluate phylogenetic QS placement accuracy of the EPA fohave the following state setl;, = aj(A), a;(C), ay(G), ap(T) €
different QS alignment methods. As baseline for compassare {0, 1}*, where thex;, are the bits which correspond to the four DNA
present corresponding results for EPA-based placementamc Ccharacters. For practical reasons, tigare implemented using one
based on QS alignments using HMMALIGN. While MUSCLE 32-bit integer per site (€.95; = a;(A) + 2a;(C) + 4a;(G) +
and MAFFT also offer modes for sequence-profile alignment8a; (") for DNA data). This approach is not limited to DNA data; it
(that can be deployed for QS alignment), we exclusively $ocu can be extended to alphabet sizes with up to 32 states in threntu
on HMMALIGN as a representative of monolithic profile-based implementation.
approaches for the following reasons: MUSCLE offers anaopti
to conduct profile-profile alignments which correspondslignang
two MSAs. Thus, either all QS need to be represented by aesingl
profile (i.e., they have to be 'pre-aligned’ with respect t&cle P
other) or MUSCLE needs to be invoked separately for each QS ol
and the individual results will have to be combined theeaft
Representing all QS by a single profile does not represenbd go
option, since it may be impossible to align the QS to eachrdthe
the short fragments do not exhibit sufficient overlap. Ferdacond
MUSCLE alternative, it is unclear, how the resulting indival per ~ Fig. 2. Unrooted reference tree (RT) and possible query sequengg (Q
QS MSAs —possibly containing gaps in the RA as well— can peinsertion pgsitioqs. The Qs are aligned against the ardesttite vectors
synthesized/merged into a single, comprehensive MSA. itrast & the candidate insertion positions.
to MUSCLE, MAFFT offers an analogous option for QS alignment
as considered here. However, in preliminary tests MAFFirnetd
considerably worse QS alignments than HMMALIGN, with respe Gap Signalln addition to the parsimony states, we also use
to our evaluation criteria (placement accuracy; see beldvoy phylogenetic information on the gap structure as inducedhisy
the above reasons, we focus on comparing phylogeny-agnostitree for our alignment process. This gap information is Wated
HMMALIGN performance against phylogeny-aware perforneanc in conjunction with the parsimony state vectors when the T i

Insertion Edges
A o

ancestral state
vector

of the PaPaRa method described in the following Section. traversed. For each alignment site we recursively compute t
PaPaRa is available as open source codétdtp: // www. flags. One flag (denoted as 'consistent gap’; CGAP) is used for
exel i xi s-1ab. org/software. html indicating that for a specific site in the RA, there considien
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appears a gap. The second flag (denoted as 'potential gagNDP
is used to indicate if the gap status of a site inconsistent. This
type of a tree-derived gap signal is based on similar ideased

OPEN flag influences the scoring scheme of the alignmentitgtigor
(see below). In general, the CGAP flag will calibrate the sapr
scheme such that, aligning QS characters against sites\GAP

in PRANK, » (Loytynoja and Goldman, 2008), which has been flag is strongly penalized. Opening and extending gaps a&ethe
designed for de-novo MSA. The two 'gap flags’ are deployed inCGAP positions will be preferred. Thereby, if we try to aligrQS

an analogous way as 'compulsory gaps’ (CGAP) and 'potefrgal

against the ancestral state of a tree region, where gapsi@man

gaps’ (OPEN) in PRANK r. Because the signal is calculated from for certain alignment sites, it is very likely that the QSgalinent
the tips toward the current insertion edge (Fig. 3), we need t will also contain gaps at these sites.

consider three cases for combining gap signals during aqvdst
tree traversal: TIP/TIP, TIP/INNER, and INNER/INNER. Thuge
need to devise rules for recursively combining the gap $sginam
the child nodes. In the TIP/TIP case (the children to the deft

The actual alignment of the QS against each ancestral state
vector is carried out by a standard dynamic programmingrifgn
for pair-wise alignment using affine gap penalties (Gotd®82).
Pairwise alignment is conducted with two modifications.st#t

right of the node at which we intend to compute the 'ancestral we deploy a 'free shift’ or overlapping alignment strategduéng,
gap signal are tips) the gap signal coming from the two tips ca 1992), that is, gaps inserted at the beginning and/or enddeofiS

either be gap or non-gap. If both tips have a gap, the resGIG&P,
which indicates that in the subtree defined by the currentstral
node the two tips have a gap signal at gitdf only one tip has
a gap, the outcome is OPEN, indicating a 'potential gap’. ther

are not penalized. Secondly, the affine gap model is only tered
inserting gaps into the QS (i.e., deletions in the QS). Feeriting
gaps in the RA (i.e., insertions in the QS), we deploy a flat gap
penalty. In practice, instead of inserting gaps in the RAjngtead

TIP/INNER case the flags are computed as follows: If eithehbo simply delete these insertion characters in the QS. Thenal
child nodes have a gap or the tip has a gap and the ancestdl chifor this is that, introducing gaps in the RA does not providg a

node has a potential gap (indicated by OPEN), the result GARC
In this case, the 'potential’ gap signal coming from the INRI&ide
is upgraded (promoted) to a consistent gap. If only one aiuide
signals a consistent or potential gap, the result is OPENallyj
for the INNER/INNER case (i.e., two ancestral child nodes)ly
two consistent CGAP signals will result in a CGAP at the atraés
node. If only one child node has a CGAP, the result at the arates
node is OPEN. This rule set for combining and propagatingyéme
signal through the tree has been derived empirically. Wthiterule
set can evidently be further re-fined, it already yields psimg
results on real biological data sets. Note that, we align @&

additional information for QS placement using the EPA. Iheot
words, 'empty’ RA columns that entirely contain gaps (medel

as undetermined characters in standard ML implementatiwitis

not affect the EPA placements, since we align only one QS at a
time. While inserting gaps in the RA may be useful for alignin
the QS with respect to each other, our focus here is on evolary
placement of the QS relative to the RA.

The alignment scoring function is provided in equation 1eTh
equation recursively defines the score of the dynamic-pragring
matrix cell D"/ in columni and row; for aligning siteA* of the
ancestral state vector against g&éin the QS.

to ancestral states derived from the edges of the RT. Thus, fo

each edge, we combine the gap signals of the two adjacensnode

This combination of gap signals is accomplished by usingtree

rules (TIP/INNER and INNER/INNER cases) as described above

Essentially, this corresponds to placing a temporary raothie
middle of the insertion edge.

taxon

taxon

TIP/TIP

TIP/INNER

INNER/INNER

Fig. 3. Gap signal 'flow’ from the tips towards the QS insertion piosit

if CGAP is set for site:

i 1
cgt = .
0 otherwise
GP6E,GP, = .
[P0 GT%) {(0, 0) otherwise
g 0 if A'andB’match
B 3 otherwise
7 = phitlig
. Difl,j GPZ
DY = min i j+ OZ_E
Dy +GPg
Di—l,j—l +Si’j -‘rCGz
D" = min DEJ 1)
I

The termC'G" is used to adapt the scoring scheme for sites where
the 'constant gap’ (CGAP) flag is set. Thereby, we substiyntia
penalize matching a QS site against such sites in the RT/RA
and allow for free gap insertion in the QS at such positions.

Dynamic Programming Alignmer®nce the gap signal and the The remaining definitions correspond to a standard dynamic-

ancestral parsimony state at the candidate insertion ezlgelieen
computed, they are deployed to calibrate the alignmentirsgor

programming implementation of the Gotoh (1982) algorithon f
sequence alignment with affine gap penalties. As describedea

scheme for the QS at this edge by modifying the match/mismatc every stated® is a bit-vector with one bit per alphabet character.

and gap open/extend penalties. Only the CGAP flag raotdthe

Thus, one may think of the ancestral parsimony state vedor a
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. . . . . A) B) Maximum
a simple profile, where the bits determine which charactethef Reference placement Error

QS can be aligned for ‘free’ against an ancestral state ctera insertion positio

(Fig. 1B). If, for exampleA’ = 1,1,0,0, this means that, As \

and Cs in the QS can be matched against alignmenti sfte

this ancestral state vector without incurring a mismatchajtg. %

Thus, the scores™ is 0 (i.e., no penalty is induced), if the bit

corresponding to characterof the QS is set ind®. Otherwise,

the scoring schem@&®7 will return the default mismatch penalty

of 3. Note that, the numerical values given in equation 1 reptese

parameters. While there exist more elaborate probabilstithods \

(e.g., TKF92; Thornet al,, 1992), 'ad-hoc’ scoring schemes (e.g., insertion Position Reference

BLAST or Smith-Waterman) are still widely used for bioinfieatics g“jﬁer;"{;d by EPA insertion Position
analyses. Moreover, because of the high computational lexityp
of our approach @(rgm?)), it is currently not computationally
feasible to explore more elaborate scoring schemes. Im wibiels,
there is a clear trade-off between model accuracy and erecut
times.
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the default parameters (used in all our experiments), whave
been derived empirically. PaPaRa can also deploy useredefin X

P

{

Fig. 4. (A) Distance measures: Node distance (ND) and edge dis{&ize
(B) The maximum placement error for two exemplary referemsertion
position.

in PaPaRa to handle cases where the procedure presentésliatre
2.1 Implementation applicable (e.g., QS not fully contained in the RA).

PaPaRa is implemented in C/C++ as experimental extension of

RAXML (Stamatakis, 2006). It uses the existing routines for

parsing alignment files and trees, as well as the existingirpany

implementation. Initially, the algorithm reads and partes RT, 3 EXPERIMENTAL SETUP

RA, and, the QS. The taxon names in the RT (Newick format)The main application scenario for PaPaRa is for metagenomic
and the RA (relaxed PHYLIP format, see RAXML v7.0.4 Manual) analyses using phylogenetic placement methods such as the
need to be consistent: all taxa in the RT must have a corre@ppn  Evolutionary Placement Algorithm (EPA) (Berger al,, 2011) or
sequence in the RA. The QS that shall be assigned to the RT capplacer (Matseret al, 2010). As mentioned in section 1, for

be read from a separate FASTA file or be included in the RA (forthese algorithms the QS need to be in alignment with the RA. To
details see PaPaRa README). this end, our performance evaluation is specifically dexigto

The aligner uses a custom-built sequential dynamic-progriag assess the accuracy of alignment methods (PaPaRa, HMMALIGN
implementation (i.e., the core alignment algorithm is Bnag with respect to analyzing (identifying) short reads by n®ean
threaded and not vectorized). However, as Farrar (2007pf phylogenetic placement algorithms. In other words, we do
demonstrated for the smith-waterman algorithm (Smith andnot directly evaluate alignment quality. Instead, we apalyhe
Waterman, 1981), dynamic programming algorithms can bempact of the QS alignment method on the phylogenetic placgm
significantly accelerated by means of vectorization. Tloeee  quality/accuracy using the EPA. Therefore, we assess rakgh
we plan to also develop a vectorized version of PaPaRaquality by means of the calculated/inferred evolutionasgipion of
Further technical implementation details (e.g., cachézation, the QS. In (Bergeet al, 2011) we devise measures and methods
parallelization) are described in the supplementary risdter for assessing the placement accuracy of short reads usrgRA.

We also implemented and tested a one-sided version of th&/e also carried out a basic assessment of QS placement egcura
alignment method, where gaps are only inserted in the QS and nwhen QS are re-aligned with HMMALIGN (v3.0), albeit in a
the RA. The respective, simplified dynamic-programmingatgm different experimental setup and context. Here, we use d@hges
exhibits fewer dependencies between matrix cell comprtatiThis  distance/accuracy measures (Fig. 4A). The node distangg, (N
property can be exploited for further performance improgets.  which is defined as the number of nodes along the path betwaeen t
This comes at the cost of alignment quality if insertionstiwi ’'true’ placement position and the inferred placement pasifsee
respect to the sequences in the RA) are common in the QS. Fdrelow) represents an absolute accuracy measure. The fiwethal
further details please refer to the supplementary material edge distance (EDN%), is a relative measure between 'tnu@’ a

As already mentioned, PaPaRa relies on a free-shift alighme inferred placement positions that is based on the actu@-esgyths
strategy. Therefore, after the dynamic-programming matas in the RT. The EDN% reflects the relative evolutionary distan
been filled, we search for the optimal alignment score (mimmh  between the two positions. In contrast to Bergeal. (2011), we
in the last row of the dynamic-programming matrix. This atofor use a revised scheme for normalizing the edge distanceeRatm
insertion of free gaps at the end of the QS. In standard fée-s normalizing it by the tree-diameter (longest path in theXreve now
alignment procedures, one has the search for the minimure gto  deploy a position-specific maximum possible placementr €Fig.
the last ronandthe last column of the matrix, because it allows for 4B). This position-specific placement-error correspormdthé QS-
free gaps at either end of both sequences. It is possibleployda  specific worst-case scenario, that is, we normalize by thgdst
local alignment scheme or the standard free shift alignmesthod  path from the 'true’ insertion position to a terminal edge.
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3.1 Realignment of simulated QS Data #sites  #sites #sites  #sites #taxa #QS
MSA ORIG MUSCLE MAFFT PRANK

D150 1269 1272 1336 1939 75 1500
D218 2101 2044 1993 6425 109 2180
D500 1398 1402 1402 1479 250 5000
D628 1199 1761 1348 2437 314 6280
D714 1241 1341 1273 2205 357 7140
D855 1436 1469 1443 2208 427 8560
D1604 1271 1325 1278 2475 802 16040

The main part of our performance evaluation compares the
placement accuracy of EPA-computed QS placement with céspe
to the placement position of the optimally aligned QS (true
placement). The EPA placements obtained without QS alighme
are regarded as the optimal (‘true’) reference placemegainst
which the phylogenetic placemengdter QS re-alignment with
PaPaRa/HMMALIGN are compared. For such an evaluation, we

require QS that are already in alignment with Fhe RA in OrderTable 1. Data sets used for evaluation of the QS alignment algoritfirthe
to compute an optimal reference placement with the EPA thaEhe values in columns 2-5 correspond to the four RA per datawtich

represents .the ’trge‘ placement. The QS} which are as.s.u.m.bd U have been generated with the different MSA approaches (QDRIGSCLE,
correctly aligned in the reference QS alignment, are ilhytidis- MAFFT and PRANK, 7.

aligned (we simply remove all gaps), and passed to the two QS
alignment procedures (PaPaRa and HMMALIGN) for re-alignme
The thereby re-aligned QS are then used as input for the EPA.

The correctly aligned QS were extracted from 7 real-world fu
length biological MSAs (termed original MSAs). The taxor eé
each reference MSA is randomly split into two sub-alignraeoft
equal size (each containing 50% of taxa from the original MSA
One half of the original MSA is then used as RA, on which set, represent ideally aligned QS, with respect to the sparding
we compute the best-known maximum likelihood (ML) tree with RA- To the best of our knowledge HMMALIGN and PaPaRa
RAXML. This tree is then used as RT for the RA. The other half Currently represent the most suitable methods for aligrsingrt-
of the original RA MSA is used to generate a QS set. Becauséeads to a RA. Therefore, we specifically did not use realtskad
both sub-alignments originally formed part of the same Mah, —data, for which the correct alignment to the RA is not .knowurO
sequences in the QS set (and all sub-sequences of thesasesjue ©XPeriments are designed to systematically test the impfa@S
are in alignment with the RA. The sequences in the QS set that a @lignment quality on the evolutionary placement processgughe
derived from a MSA of full length sequences are then reduped i EPA- Thus, we did not consider alignment quality criteri¢heo
length (see below for details) to emulate QS that resemset sh than the relative QS placement error with respect to theeete
sequence reads. QS placement obtained from the original MSA.

For each data set, we carried out our performance analysis From every full-length QS in the QS set, we randomly sub-
using three common MSA methods to generate three origina MS Sampled 20 contiguous QS with uniformly distributed positi
versions respectively. We computed de-novo MSAs using MLESC ~ @nd normally distributed lengths (mean lengti0 + 10 bp and
(v3.70), MAFFT (v6.626), and PRANKy. We selected these 200 + 60 bp). We have already u;ed this method for QS generation
three programs, because they are widely used state-afttoades N (Bergeret al, 201_1) to create S|_mulated short read sequences that
for MSA and because they are based on fundamentally differen€Mmulate reads obtained from a high throughput sequenceedet
alignment philosophies. Since we adopt an agnostic view loat w of the 20 sub-sampled QS, we computed an individual referenc
the best MSA strategy may be, we thereby intend to assess tHdacement, because the EPA placement of the sub-sampled QS
flexibility and adaptability of PaPaRa to diverse MSA phipkies ~ can differ from the placement of the full-length QS. Thereby
that are implicitly encoded in the underlying RAs. Finallge ~ C€an more accurately assess the QS alignment impact on ptatem
also used the partially manually curated MSAs as providethby ~accuracy, without the potential bias that is induced by Qte
authors of our test data sets. While manual curation is delstin ~ variation (see Bergeet al. (2011)). To yield the evaluation more
particular in the light of reproducibility of results, we metheless ~ realistic, we then also modified the subsampled QS by ingiogu
used the given MSAs because hand-curation is still commorfyPical next-generation sequencer errors. Based on théaust
practice and may encode empirical biological knowledgeuatie ~ IMplemented in Grinder (Anglet al, 2009) and the empirical
underlying data. We also conducted an experiment usinglateds ~ data by Balzeret al. (2010), we re-implemented an appropriate
sequence data. On the simulated alignment, the performaince Model for simulating representative 454 homopolymer secjug
PaPaRaand HMMALIGN is considerably better than on the €rrors. Each homopolymer (this also includes single cherskc
corresponding real-world alignment and tree (see suppitane  thatis detected in the raw QS is randomly shortened or etedga
material for details). Thus, the QS alignment problem isleafor ~ @ccording to empirical probabilities provided by Balzer al.
real data than for simulated data. Therefore, we use reaeseq ~ (2010). _ - o _
data for our performance assessment. For each of the 7 datavse ~ Because we derive the new RA by splitting the original MSAint
thus have 4 original MSA versions: manually curated (caDRIG WO parts (i.e., the RA and the QS set), itis likely that the Rit
throughout the paper), MUSCLE, MAFFT and PRANK. Table 1 contain sites that entirely consist of gaps. This is esfigc¢iae for
contains information about the length (number of RA colujrins ~ MSAs generated with PRANK, that frequently comprise sites
the data sets as well as the number of taxa contained in thaRds With only one or two non-gap characters. Since entirely mp
the respective number of QS. columns that only contain gaps are not present in real MSAs,

In our experiments, we assume that the full length QS (and théuch columns are completely removed from the R#or to QS

derived short QS) obtained from the 4 MSA versions for eath da alignment (using HMMALIGN and PaPaRa) and placement in our
experiments.
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4 RESULTS & DISCUSSION this is especially pronounced on the smaller data sets asththxa.
For each of the 7 data sets, we determined PaPaRa- anthus. apparently, the advantage of using a phylogeny-a@d&e

HMMALIGN-based QS placement accuracy for all 4 original MSA alignment strategy on data sets with few taxa is smallerofrirast
versions. Tables containing the results for all data setpeovided 0 PaPaRa, on small data sets HMMALIGN can take advantage of

in the supplementary material. The values in the Tablescinei  itS more powerful probabilistic RA model and the stronggnai
RT-based average ND and EDN% distances between the ‘truetontained in the 200 bp long QS. However, the typical RT wéll b
reference EPA placements, based on the QS alignment edract considerably larger than the smgllest data sets in thiyshetause .
from the original MSA and the respective EPA placements with©f the very dense taxon sampling of the 16S rRNA. Thus, while
QS re-alignment. Values for the two QS re-alignment methodghe accuracy improvement induced by PaPaRa is minor on small
(PaPaRa, HMMALIGN) are provided separately. Preliminasts data sets, it substar?tlally improves placement qualityhenlarger
using MAFFT for QS alignment, generated placements tha¢\wer ~ 'eference data sets in our experiments.

least 2 times further away from their reference positiomttiese The rather pronounced difference between the two distance
obtained with HMMALIGN (data not show). We therefore only Measures (i.e., when the ND is considered, the advantageRaitra
report results for HMMALIGN and PaPaRa. over HMMALIGN is larger than for the EDN%), can be attributed

In Table 2 we provide results for the largest data set (D1694) O the RT shape of this data set (D1604): Visual inspectivaated
terms of number of taxa using QS with a mean lengthasf + 10 that, it contains a large number of closely related taxa lvigives
bp. When HMMALIGN is used for re-alignment on the manually rise to a large number of relatively short edges (branchea) the
curated MSA on this data set, EPA placements are on averaddPs Of the tree. Thus, if a QS is misplaced within such a negib
1.35 nodes (column HMM, row ORIG) away from the reference the tree, this can result in a relatively large ND (becauseetlis a
placement position. For PaPaRa the corresponding nodendest large number of nodes in the region), but a small EDN% singegd
(ND) is 0.28 (column PA, row ORIG). When the relative distanc betweep the nodgs are short. The HMMALIGN re-aligned QS tend
(EDN%) is used, the corresponding values are 1.35 (HMMALJGN t© be misplaced in such 'dense’ areas of the tree, whichtesub
and 0.71 (PaPaRa). Therefore, PaPaRa reduces the erromiodgS ~ 'elatively large average ND compared to PaPaRa re-aligrgdiQ
placement distance by a factor of 4.87 (factor 1.90 for thatiwe  thiS €nd, by using a phylogeny-aware approach, PaPaRa t&n be
distance) compared to HMMALIGN. For the automated MSA Use such densely sampled areas in the RT, while such a firedra
methods (MUSCLE, MAFFT, PRANKr), HMMALIGN and resolution can not be achieved by using a 'flat’ probabdigtiofile
PaPaRa yield analogous accuracy differences. The EPAmptats (e.0., HM.MALIGN). On smaller data sets the differences hesw
of re-aligned QS are on average 3.11-5.88 times closerd5Z— the two distance measures are less pronounced (see supfieyne
times for the EDN% distance) to the reference placementsring ~ material). _ _
of node distance (ND) for PaPaRa than for HMMALIGN. On some [N most cases, the largest difference in placement accuracy
of the smaller data sets (D150, D218 and D714) the PaPaRaedli Petween PaPaRa and HMMALIGN is observed for PRANK
QS can produce worse placements than the HMMALIGN-aligned®@sed MSAs. Because of the specific MSA approach in PRANK
QS (see supplementary material). However, in most cas€afRa & strong and consistent gap signal is embedded into thenatigi

only produces worse results with respect to the EDN% measure MSA. In contrast to HMMALIGN, PaPaRa is able to use this
embedded gap-signal in combination with the respective IRT.

Figure 5 we provide histograms of the average ND distrilbutio

ND EDN % for QS (with mean length 100bp) over all data sets and for all
D MA PaPaRa HMM | PaPaRa HMM reference MSAs. PaPaRa-based QS alignments generatmplaise
= ORIG 0.28  1.35(4.87) 071  1.35(1.90) that are, on average, closer to the 'true’ reference pasitiche
+ MUSCLE 0.43  1.35(3.11) 087 1.48(1.70) histograms also show that for PRANK-generated MSAs, the
§ MAFFT 029 121(4.12) 072  1.29(1.80) placement accuracy decrease induced by using HMMALIGN is
PRANK.r | 041 243(5.88) 095 241(252) more pronounced compared to other MSA methods. In general,
3 ORIG 0.25 0.90(3.53) 0.63 0.80(1.28) PaPaRa is thus more robust with respect to different MSA
+ MUSCLE 0.40  1.03(2.61) 0.76  0.92(1.21) philosophies and hence more adaptable.
§ MAFFT 0.26  0.82(3.18) 0.65 0.79(1.21) For the above experiments, we knew a priori, that the QS had
PRANK;r | 034 165(4.80) 084 1.39(1.64) sufficiently closely related sequences in the RA. If thisas given

Table 2. Placement accuracy for the two QS alignment methods on the(e g
largest data set (D1604). The relative accuracy of HMMALIGdnpared '
to PaPaRa is given in parentheses.

if reads from a distant clade not contained in the RE ar

sampled), according to some preliminary experiments haeithe

QS alignment method nor the EPA can be expected to produce

resonable results. This observation also holds when thet@8 s

from a different (e.g., non-orthologous) genomic regioanttihe
For the longer QS of mean length 200, in most cases, placemeisequences in the RA. Therefore, we suggest that the QS sheuld

accuracy increases for both alignment methods. The imptemés ~ checked beforehand, for example by doing a quick BLAST ¢earc

are more pronounced for HMMALIGN, where the ND is improved against the sequences in the RA to reject completely uecklat

by up to a factor of 2. Generally, accuracy differences betwe sequences.

PaPaRa and HMMALIGN decrease. For 5 out of the 7 data

sets PaPaRa produces worse results than HMMALIGN at least

for some of the tests (i.e., for certain RA and distance nmeasu

combinations, see supplementary material). As with thetsh@S,
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orig muscle HMMALIGN and PaPaRa can be significantly reduced in future
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5 CONCLUSION & FUTURE WORK

246 8101214 0 2 46501214 We have conducted an experimental evaluation of methods for
node-dist from reference placement node-dist from reference placement a|igning short QS against a fixed RT and RA in the context of
mafft prank likelihood-based evolutionary QS placement methods. Vé® al

introduced PaPaRa, a novel phylogeny-aware method for this
purpose. On short QS and large RAs, PaPaRa performs beidter th
the currently best phylogeny-agnostic method (HMMALIGRpr
longer QS and small RAs the performance of the current PaPaRa
12000 implementation is relatively poor. Apparently, the morevpdful
0 2 4 6 8 1012 14 0 2 46 8101214 probabilistic model in HMMALIGN, is beneficial, if the RA is
node-dist from reference placement node-dist from reference placement small enough to be represented by a single flat prof“e_ Fgel‘ar
RAs, PaPaRa has the advantage of sampling different sifoats
Fig. 5. Histograms showing the distribution of the placement i) for different parts of the associated RT and performs well, itesising
PaPaRa and HMMALIGN aligned QS, over all data sets. a simple model for ancestral states and an 'ad-hoc’ scodhgree.
We intend to introduce additional heuristics for reducihg total
number of ancestral state vectors against which indiviQ#&heed
4.1 Execution times to be aligned. We also plan to exploit data-parallelism & ¢bre
dalignment algorithm by using SSE and AVX vector instrucsion
PaRa can also be used to generate multiple 'candidajehadints
or each QS (it is likely that the current method generateliphe
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We also carried out a runtime assessment of HMMALIGN an
PaPaRa. A serial execution of PaPaRa requires 385s — 44,27

on the smallest (D150) and largest (D1604) data set respbcti
( ) gest ( ) pbC alignments with equal scores per QS because of the diso@tiag

using the ORIG MSA and QS of lengt§0 + 60 bp on an 3.2
( g Q g b scheme). Those different per-QS alignment candidatesddbehn

GHz Intel Core i5; compiled witlgcc 4. 5. 1 for Linux). The b 4 by their bl der ML : et b
corresponding HMMALIGN times range between 61s and 1031s. e scored by their placement scores under to select t e

Thus, HMMALIGN s 6.3 — 43 times faster than PaPaRa. Thisandidate” , ,

performance difference is not surprising, because PaRaRianes As a more fundamental |m.prov'ement, we will explore methpds
depend on the number of Qshd the number of taxa in the RT, © refine the gap propagation in the tree based on a binary
In other words, PaPaRa exhibits a significantly higher téioal likelihood mo‘_’,e'-, A fgrther option, worth exploring, woulte to
runtime complexity than HMMALIGN. Therefore, performance use a probabilistic alignment approach, where the andestirees

optimization of the core alignment procedure is essentiab¥erall _resemble the probability vectors as useql n Ilke_hhoodetiasee
PaPaRa performance. The inherent —significantly highere i inference. In the long term we will work on integrating the/Biith

complexity of PaPaRa is also one main reason for aligningnaga PaPaRa. Ot?e ]PcilsT,lble ?ppllcatlon would bhe dynamic a!lgdérmB K
ancestral parsimony state vectors (i.e., bit-vectors}eed of using extension by full length sequences as they appear in GenBan

a probabilistic approach that would require costly floatpnt Th]s 'would represent a step towards simultaneous/intedriae-
arithmetics building and alignment.

Currently, PaPaRa creates the QS alignments in two phases:
Initially, all QS are aligned, and thereby scored, agailistreestral ~ Acknowledgements
state vectors (insertion positions/edges of the RT). Fdopeance  Funding: This work was partially funded under the auspices of the
reasons the actual alignments (i.e., the dynamic progragmi Emmy-Noether program by the German Science Foundation JDFG
traceback) are not generated in this phase. After the besingc
insertion position has been determined for each QS, thealactu
alignments are then generated by aligning them again to éke b
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