FPGA Optimizations for a
Pipelined Floating-Point Exponential Unit

Nikolaos Alachiotis and Alexandros Stamatakis

The Exelixis Lab, Scientific Computing Group
Heidelberg Institute for Theoretical Studies
email: {Nikolaos.Alachiotis,Alexandros.Stamatakis}@h-its.org

Abstract. The large number of available DSP slices on new-generation
FPGAs allows for efficient mapping and acceleration of floating-point
intensive codes. Numerous scientific codes heavily rely on executing the
exponential function. To this end, we present the design and implemen-
tation of a pipelined CORDIC/TD-based (COrdinate Rotation DIgital
Computer/Table Driven) Exponential Approximation Unit (EAU) that
will be made freely available for download (including the hardware de-
scription). The EAU supports single and double precision arithmetics
and we provide appropriate configurations for Virtex2, Virtex4, and Vir-
texb FPGAs. The architecture has been verified via simulations and by
testing on a real FPGA. The implementation achieves the highest clock
frequency reported in literature to date. Moreover, the EAU only oc-
cupies 5% of hardware resources on a medium-size FPGA such as the
Virtex 5 SX95T. In addition, a general framework for safely conducting
application-specific optimizations of floating-point operators on FPGAs
is presented. We apply this framework to a bioinformatics application
and optimize the EAU architecture using width-reduced floating-point
operators and application-specific performance tuning. The optimized
application-specific EAU occupies approximately 70% less hardware re-
sources than the initial single precision implementation.

Keywords: floating point, exponential, FPGA, CORDIC, Table-Driven

1 Introduction

Field Programmable Gate Arrays (FPGAs) are increasingly being used as accel-
erators for floating-point intensive scientific applications which suffer from long
execution times. Furthermore, the unprecedented growth of FPGAs in terms of
reconfigurable resources, in particular with respect to the number DSP slices and
memory blocks available, has facilitated their deployment as accelerator devices
for floating-point intensive codes. Because of their inherent complexity, widely
used functions such as the exponential function require an excessive amount of
reconfigurable resources when both good performance and high accuracy are
desired.

Our research focuses on developing a reconfigurable phylogenetic co-processor
[1,2] for RAXML [3], a Bioinformatics program, which evaluates the Maximum

Likelihood function on evolutionary trees. The likelihood computations require
frequent evaluation of the exponential function.

There already exist several implementations of the exponential function on
FPGAs [4-10]. While most of these implementations provide high numerical
accuracy—that may however not always be required—only one is freely available
for download. This open-source exponential unit can be generated using the
FloPoCo tool suite [9].

Here, we present and make available (nttp://wwkramer.in.tun.de/exelixis/expFPGA.
tar.bz2) a single precision pipelined floating-point Exponential Approximation
Unit (EAU) that is based on similar design principles as our recently released
Logarithm Approximation Unit (LAU) [11]. Moreover, we apply a RAxML-
specific optimization/adaptation process to further improve the performance of
the EAU co-processor and to reduce the amount of hardware resources that are
required for the calculation of the exponential function. Based upon this opti-
mized single precision EAU configuration, we have developed a double precision
EAU that will also become available for download.

The EAU architecture is based on a TD (Table-Driven) implementation of
the CORDIC (COrdinate Rotation DIgital Computer) algorithm. CORDIC (also
known as Volder’s algorithm [12]) is a digit-by-digit method that relies on ad-
ditions, shift operations, and read-only memory. The original algorithm that fo-
cused on calculating trigonometric functions was later extended by Walther [13]
to compute functions like the logarithm and the exponential. This iterative algo-
rithm generally requires resource-intensive hardware implementations to attain
sufficient accuracy levels coupled with high performance. However, accuracy and
performance requirements are determined by the application at hand. Thus, it
may be desirable to sacrifice a certain amount of accuracy and/or speed for sav-
ing hardware resources and thereby make more resources available to the larger,
potentially slower, and more complex overall hardware design (e.g., RAxML)
into which an exponential unit is embedded.

Based upon this rationale, the EAU, can be optimized and adapted with
respect to the architecture that will be using it, in our specific case, the phylo-
genetic co-processor. Design and optimization decisions have thus been made to
generate a unit that is both resource-efficient and does not decrease the average
performance of the entire co-processor.

The remainder of this paper is organized as follows: In Section 2 we review
previous work on FPGA-based exponential units. Section 3 introduces the EAU
architecture. The application-specific optimization framework that was applied
to the single precision EAU is described in Section 4. In Section 5 we assess EAU
performance and conduct a performance comparison with competing implemen-
tations. We conclude in Section 6.

2 Related Work

There already exist various alternative implementations of floating-point expo-
nential units for FPGAs [4-10, 16].

Boudadous [16] presented a CORDIC algorithm on a Xilinx VirtexE FPGA.
However, as discussed in the evaluation section of [16] this implementation suffers
from a comparatively high relative error rate.

The implementations presented in [8] and [9,10] only address SP (single
precision) exponential units, while those presented in [6,7] and [4,5] focus on
DP (double precision). Our EAU architecture can accomodate both SP (SP-
EAU) and DP (DP-EAU). The number of DSP slices and memory blocks used
is slightly higher for the DP-EAU. Since the amount of DSP slices and memory
blocks increases significantly with each FPGA generation, the EAU architecture
is thus well-suited for new-generation FPGAs (e.g., Virtex 5 and 6 families).

With respect to SP, Doss et. al [8] presented a pipelined table-driven ap-
proach that occupies as much as 5,564 slices on a Virtex II FPGA and operates
at a maximum clock frequency of 85MHz. Detrey et. al [10,9] presented an al-
ternative table-driven approach which is significantly more efficient than the
implementation by Doss [8] in terms of resources (only 948 slices are required).
At the same time the implementation by Detrey exhibits a higher clock frequency
(100MHz) when mapped to a FPGA of the same family (Virtex II). While it
is not entirely clear from the paper what the accuracy of the implementation
by Doss is, the core by Detrey et. al offers last-bit accuracy. The SP-EAU does
not attain this level of accuracy, since the optimization stategy (see Section 4)
that has been adopted for the design of the EAU targets a specific application
(RAxML), that does not require such a high degree of accuracy for numerical
stability. Furthermore, the SP-EAU occupies less resources than [8] but is not as
resource-efficient as [10,9]. Nonetheless, the SP-EAU clearly outperforms both
aforementioned implementations in terms of maximum clock frequency (168 MHz
on a Virtex II).

Regarding DP, Jamro et. al [6,7] also presented a table-driven implementa-
tion that occupies approximately 5,000 slices on a Virtex 4 FPGA. It exhibits
a very low latency (27 clock cycles), high accuracy (to meet precision require-
ments of a quantum chemistry application), and has the second-highest clock
frequency (166MHz) after the DP-EAU. Pottathuparambil et. al [5] presented,
and recently improved [4], a CORDIC implementation which was also mapped
to a Virtex 4 FPGA. The most recent paper [4] introduced a more efficient im-
plementation than [6,7] in terms of resources, a latency of 258 cycles, and a
clock frequency of 100 MHz. The implementation is partially pipelined, but due
to the iterative procedure, the pipeline needs to be flushed after every iteration.
In every iteration the computation of 5 DP values can be accomodated since this
corresponds to the pipeline length of the iterative part. The RAxML-optimized
DP-EAU architecture is partially pipelined as well and the computation of 11
DP values can be accomodated during each iteration. To allow for a fair per-
formance comparison, the DP-EAU was also mapped to a Virtex 4 FPGA. The
implementations by Jamro [6,7] occupy more FPGA slices than the DP-EAU,
while the one presented in [4, 5] is more resource-efficient than both the Jamro
as well as the DP-EAU implementations.

The EAU significantly outperforms both [6,7] and [5,4] implementations in
terms of maximum clock frequency (252 MHz). The EAU architecture can sup-
port both SP and DP and has been designed for applications that do not require
maximum accuracy. It offers a fully pipelined and also a partially pipelined
mechanism and represents a sufficiently accurate implementation at the highest
maximum clock frequency reported in literature to date.

3 The EAU Architecture

The EAU architecture represents a one-to-one transformation into VHDL of
the exponential function implemenetation in C which forms part of the most
recent release of RAXML (v7.2.8, http://wwwkramer.in.tum.de/exelixis/
software.html). The RAXML C exponential function implementation is based
on the CORDIC C++ library by Burkardt [14].

Throughout the paper, we denote the C++ exponential function of the
CORDIC library [14] as EXP_-CORDIC. The TD extension of EXP-CORDIC
that was integrated into the RAXML C code is denoted as EXP_FPGA. 1t also
represents an ezxact software model of the EAU hardware architecture. Further-
more, by SP, DP, and FP we denote IEEE-754 single precision arithmetics,
IEEE-754 double precision arithmetics, and floating-point representations re-
spectively.

The EXP_CORDIC code performs 4 operations denoted by the author as:
Determine Weights, Calculate Products, Perform Residual Multiplication, and
Account for factor EXP (X_INP), where X_INP = floor (INPUT). The first
two operations execute for-loops that perform a predetermined—fixed—mnumber
of iterations. The third operation is a static mathematical function that com-
bines the results of the first two fields. The last operation, which calculates the
factor EXP(X_INP), is implemented as an iterative process using multiplica-
tions/divisions. The number of iterations and hence the execution time for this
operation are not known a priori, since they are determined by the absolute
value of X_INP. Such an unpredictable behavior is problematic for a pipelined
hardware architecture, since results can be produced at unexpected clock cycles.
In order to overcome this drawback of EXP_CORDIC in the EAU, the respec-
tive Account for factor EXP(X_INP) operation of EXP_FPGA deploys a lookup
table.

Figure 1 depicts the fully pipelined general EAU architecture (left) and the
optimized application-specific unit for RAxML (right). The design consists of
three components denoted as PRE_ITER, ITER and AFT_ITER.

The PRE_ITER component splits the input value into respective integer
and decimal values. The floor() function (see above) has been implemented us-
ing a subtracter and a Xilinx Floating-Point Operator (FPO) [15] configured
for float-to-fixed operations. The subtracter is used to execute the operation:
input_number — 0.5. This is necessary because the default (and sole available)
rounding mode of the Xilinx FPO is "Round to Nearest”, as defined by the
IEEE-754 Standard.

input value 0.5 valid

input

: SUB [.

: input value

: 0.5
PREj shft
ITER ' :

: valid
PRE | ¢
: SUB ITER :
ITER7 constant . <hit
. reg
constant }
- +Values+ -
2oL |
shft valid
reg input
ITER :
: ITER !
: FSM
R : \iﬁgﬂf shi
| | o
| ITER_COMP | %9 10Ty — reg
1 | .
o ;j o 1 : ADD FSM mLUT
v : index
[
ADD mLUT L ;}rlg{ N0 & '« mLUT
AFT } ¢—‘ f : 1 pLUT
. —r ¥ ! index I
ITER | 3 MULT pLUT
: MULT pLUT : ¢
i ‘ output value valid output
MULT

output value valid output

Fig. 1. Block diagram of the general EAU architecture (left) and the optimized,
application-specific EAU architecture (right).

The ITER component corresponds to the Determine Weights operation of
EXP_CORDIC. This component calculates an array of FP values and reduces
the decimal part of the input argument by using a parameter that is divided by
two in each iteration. The array of FP values is used by the iterative Calculate
Products operation to compute a base value which is then provided as input to
the Perform Residual Multiplication field. In order to further optimize this part of

the algorithm, EXP_FPGA (the C code as well as the hardware implementation)
calculates a bit-vector (instead of a FP array) during the iterative part. This bit-
vector is then used as an index for a second lookup table that contains values
that would otherwise need to be calculated by the Calculate Products field.

Finally, the AFT_ITER component implements the remaining operations:
Calculate Products, Perform Residual Multiplication, and Account for factor
EXP(X_INP). As already mentioned, the Calculate Products and Account for
factor EXP(X_INP) fields are calculated via lookup-tables (m_-LUT and p_-LUT
in Figure 1) while the Perform Residual Multiplication operation only requires
an addition and a multiplication.

4 Application-Specific Optimization

The EAU architecture has been extensively optimized. The optimizations aim
to reduce the hardware resources occupied by the unit, while not affecting the
overall accuracy of the phylogenetic coprocessor into which the EAU is embed-
ded. In order to identify the type of optimizations that can be applied, a set of
experiments were conducted. We tested the behavior of RAxML in software for
various accuracy levels of the exponential function and analyzed the exponential
function call pattern, that is, at what frequency the specific function is invoked
and with which load each time. Here, the term load refers to the number of con-
secutive exponentials the program needs to calculate without other intervening
arithmetic operations, that is, for-loops that only contain calls to the exponential
function can be used for determining the (maximum) exponential function load
of RAxML.

The accuracy required by the exponential function in the application allowed
for further reducing the number of iterations in EXP_CORDIC. EXP_FPGA only
executes 12 iterations without significantly (in a statistical sense) affecting the
behavior of RAXML. The next step consists of quantifying the maximum relative
error of EXP_FPGA versus the GNU DP EXP (GNU C Library [17]) function
that is used by RAxML. This information allowed to safely apply the reduce-
width technique [6, 7] for floating-point operators, that is, the use of FP operators
that do not comply with the IEEE-754 standard for SP/DP representations.
When the width is reduced, the exponent and mantissa fields only contain as
many bits as necessary to attain the required arithmetic range and precision.
Furthermore, we also appropriately decreased the width of the floating-point
representations in the lookup tables to reduce the number of required memory
blocks.

The application of the reduce-width technique alone was not sufficient to
decrease the EAU hardware resource requirements to an acceptable level, since
not all operators of the EAU can be width-reduced. In order to determine if an
operator can be reduced or not, we simulated the behavior of width-reduced op-
erators in EXP_FPGA by reducing the width of the input and output arguments
of the operator.

Finally, the largest reduction in EAU resource utilization was achieved by
analyzing the exponential function call pattern and respective load in RAxML.
A thorough analysis of the source code revealed that the exponential function
is called a specific number of times that is determined by the load. In between
such sequences of exponential invocations, a huge number of multiplications and
additions is carried out that perform other parts of the likelihood calculation.

The time window, during which only multiplications and additions are car-
ried out, allows for further optimization of the EAU with respect to hardware
resource utilization, by reducing the unit’s pipelining capability. The rationale
is that, a pipelined EAU architecture which can accomodate more exponential
calls than the maximum load of the application using it, will exhibt exactly the
same performance as an EAU whose pipeline matches the load.

Thus, the limit-pipeline optimization approach allowed us to further reduce
the hardware footprint of the EAU by utilizing only a single width-reduced
subtracter for the ITER component. As already mentioned in Section 2 the
latency of the iterative part of the EAU determines the maximum number of
input values that can be accomodated at each invocation of the exponential
function. The current EAU configuration utilizes a minimal amount of hardware
by occupying only one subtracter in the respective ITER component. Thus,
only 11 exponentials can be calculated between pipeline-flushes. Note that, this
configuration is not sufficient to accomodate the maximum exponential load of
RAxML, which can amount to 40 consecutive exponential calculations when
protein data is analyzed. It can fully accomodate the load of DNA analyses
though. Therefore, further tuning is required to determine the optimal number
of input values that the EAU should be able to accomodate at each call and/or
whether two or more partially pipelined EAUs are more efficient than a single,
fully pipelined, one.

5 Evaluation & Performance

Dataset |[RAXxML with GNU EXP|RAxML with EXP_FPGA
44-355 -11231.33 -11231.32

90-1524 -54074.89 -54077.97

150-1130 -39606.93 -39611.42

218-1846 -134160.35 -134166.02

140-1041 -120849.31 -120849.41

Table 1. Log-likelihood score deviation of RAxML with EXP_FPGA.

Initially, we verified the functionality of the EAU architecture (Section 5.1)
and examined the overall behavior of the application (Section 5.2). A detailed re-
source usage, accuracy, and performance analysis on the same FPGA device that

| SP-EAU | DP-EAU

RESOURCES-Total
slice registers-58,800 1792 3131
slice LUT's-58,800 1669 2909
occupied slices-14,720 724 1085
36k blockRAM-244 2 6
DSP48Es-640 6 15
ACCURACY
Max RE* 0.83 27 17[0.86 x 2~ *°
Mean RE* 0.66 27 17[0.59 x 27"
PERFORMANCE
Clock Frequency(MHz) 317,6 307,9
Latency(# clock cycles) 212 222

Table 2. Resource Usage, Accuracy and Performance of the SP-/DP-EAUSs on a Virtex
5 SX95T-2 FPGA. (* Relative Error)

was used for verification can be found in Section 5.3. Section 5.4 describes how
each step of the optimization process affected the efficiency of the architecture.
Finally, Section 5.5 provides a comparison with other hardware and software
implementations.

5.1 Hardware Verification

The EAU was implemented in VHDL, using the Xilinx ISE Suite 10.1 for syn-
thesis and post place and route. In order to verify correctness of the proposed
architecture, we conducted extensive post place and route simulations as well as
tests on an actual FPGA. As simulation tool we used Modelsim 6.3f by Mentor
Graphics. For hardware verification we used the HTG-V5-PCIE development
platform equipped with a Xilinx Virtex 5 SX95T-1 FPGA. The advanced ver-
ification tool Chipscope Pro Analyzer was used to monitor the output port of
the SP- and DP-EAUs and the expected signals for given input numbers were
tracked.

5.2 Application-Level Error Analysis

Due to the application-specific optimization process described in Section 4, the
accuracy of the EAU is inferior compared to other existing implementations.
Nonetheless, the accuracy is sufficient for our target application. Table 1 shows
the log-likelihood score deviation of RAxML with and without using the EAU
for the exponential on various real-world biological datasets. Based on standard
statistical significance tests (as implemented in the CONSEL package [21]), that
are commonly used in phylogenetics (see [20] for a review), the differences (in-
duced by the approximation of the exponential function) of log-likelihood scores

between trees is not statistically significant. Therefore, an EAU with 12 itera-
tions in the ITER component provides sufficient accuracy for RAxML.

5.3 EAU Architecture Evaluation

Table 2 contains the resource utilization report for the EAU after the post place
and route process. Accuracy results (maximum and mean relative error) as well
as performance (maximum clock frequency and latency) for the SP and DP
configurations are also provided. Benchmarks with 10® random numbers were
used to measure the maximum and mean relative error of the implementations.

5.4 Optimization Techniques Evaluation

initial|width-reduced|pipeline-limited

slice registers-58,800 || 5964 6853 1792

slice LUTs-58,800 5396 6433 1669

occupied slices-14,720 || 2020 2274 724
36k blockRAMs-244 | 2 2 2
DSP48Es-640 34 10 6

max frequency(MHz) ||305,9 3254 317,6

latency (# clock cycles)|| 194 194 212

Table 3. The effect of each optimization step on the SP-EAU when mapped on a
Virtex 5 SX95T-2 FPGA.

The initial SP-EAU implementation executes 12 iterations and is fully pipelined.
The optimization techniques described in Section 4 were then applied step-by-
step to this basic design. Table 3 shows the effect of each application-specific
optimization step on hardware resources, clock frequency, and latency.

The reduce-width optimization yielded a significant reduction of DSP slices,
while slightly increasing reconfigurable resource utilization (slice registers, slice
LUTSs, occupied slices). This redistribution of resources, that is, less DSPs and
more slices, is due to different implementation decisions made by the Xilinx
FPO operator, when custom-sized floating-point operators are generated (i.e.,
reconfigurable resources are used instead of DSPs).

The limit-pipeline optimization further reduced the number of DSP slices
as well as all other reconfigurable resources used. Clock frequency and latency
slightly increased after application of all optimization steps. The increased la-
tency is caused by the width-reduced floating-point operators, that are reconfig-
ured after the second optimization step (limit-pipeline) to obtain a final maxi-

mum clock frequency that is roughly equivalent to the initial clock frequency of
the EAU.

10

5.5 Comparison with other implementations

Details SP-EAU Doss [8]|Detrey [10]
Style CORDIC + TD| TD TD
Error (Max) 0.83 %2717 NA* 272
Slices 2483 5564 948

Max Frequency 168 MHz 85 MHz| 100 MHz
Latency 212 cycles NA* 85ns

Table 4. Resource Usage, Accuracy and Performance comparison of SP implementa-
tions. (* Not Available in [8])

Details DP-EAU |Pottathuparabil [5]|Jamro [6]
Style CORDIC + TD CORDIC TD
Error (Max) 0.86 2723 2753 0.4708 *
Slices 3407 2024 5000
Max Frequency 252 MHz 100 MHz 161 MHz
Latency 224 cycles 258 cycles 27 cycles

Table 5. Resource Usage, Accuracy and Performance comparison of DP implemen-
tations. (* This value is mean absolute error measured in ULP (Unit in the last
place [18]).)

As explained in Section 2 the SP-EAU was also mapped to a Virtex II device
in order to conduct a fair comparison between our implementation and those
presented in [8] and [10]. Accordingly, the DP-EAU was also mapped to a Virtex
4 device and compared to the respective DP implementations [6,5]. Tables 4
and 5 provide a summary of these comparisons.

Furthermore, we assessed the performance of the EAU architecture with re-
spect to software implementations: SP-/DP-GNU exponential functions [17] and
SP-/DP-MKL (Intel Math Kernel Library [19]) exponential functions. In order
to take full advantage of the Intel Core2 Duo T9600 processor@2.8GHz that
was used for the comparisons, we used the Intel icc compiler with appropriate
optimization flags.

Table 6 provides the execution times of the SP/DP GNU functions (expf,exp)
and SP/DP MKL functions (vsExp,vdExp) for 10® invocations of the functions.
The SP GNU function (expf) is known to be slower than the DP GNU function
(exp; see comments in the expf source code).

The fully pipelined SP-EAU implementation is 94 times faster than the GNU
expf function and as fast as the MKL vsExp function. As expected, the optimized
(width-reduced and pipeline-limited) SP and DP EAUs are slower than the MKL

11

implementations. Nonetheless, the SP-EAU is 7 times faster than the SP GNU
function and the DP GNU function is only 1.34 times faster than the DP-EAU.

Implementation Execution Time|Clock Frequency
expf (gec) 29,408 2,8 GHz
vsExp (ice) 0,312 2,8 GHz
exp (gec) 3,268 2,8 GHz
vdExp (icc) 0,632 2,8 GHz
Initial SP-EAU 0,31 305 MHz
Pipeline-Limited SP-EAU 4,2 317 MHz
Pipeline-Limited DP-EAU 4,4 307 MHz

Table 6. Execution times (in seconds) of the GNU, MKL and EAU implementations
for 10® invocations.

6 Conclusion & Future Work

A new architecture to calculate an approximation of the exponential function in
reconfigurable logic under SP and DP was presented. The SP-/DP-EAU config-
urations for several FPGA families (Virtex2, Virtex4 and Virtex5) will be made
freely available for download. The functionality of the EAU architecture was
verified on real hardware and both (SP/DP) configurations occupy less than 5%
of overall hardware resources on a medium-sized new-generation FPGA like the
Virtexd SX95T.

Furthermore, the EAU component was optimized for being used as an em-
bedded component in a larger and more complex reconfigurable phylogenetic
co-processor that is currently under development. We provide a detailed de-
scription of this application-specific optimization process and individually assess
the effects of every optimization step.

Future work will focus on the integration of the EAU into the phylogenetic
co-processor and on further tuning after integration, that is, to determine the
optimal number and EAU(s) configuration in terms of performance, resources,
and number of units deployed.

References

1. Alachiotis, N., Sotiriades, E., Dollas, A., Stamatakis, A.: Exploring FPGAs for Ac-
celerating the Phylogenetic Likelihood Function. Proceedings of HICOMB2009, pp.
1-8, Rome, Italy (2009)

2. Alachiotis, N., Stamatakis, A., Sotiriades, E., Dollas, A.: A Reconfigurable Architec-
ture for the Phylogenetic Likelihood Function. Proceedings of FPL 2009, pp. 674-678,
Prague, September (2009)

12

3. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics, vol. 22, no. 21, pp. 2688—
2690 (2006)

4. Pottathuparambil, R., Sass, R.: A Parallel/Vectorized Double-Precision Exponential
Core to Accelerate Computational Science Applications. Proceedings of FPGA 2009,
Monterey, California, USA, pp. 285-285 (2009)

5. Pottathuparambil, R., Sass, R.: Implementation of a CORDIC-based Double-
Precision Exponential Core on an FPGA. Proceedings of RSSI 2008, Urbana, Illinois,
USA (2008)

6. Jamro, E., Wiatr, K., Wielgosz, M.: FPGA Implementation of 64-bit Exponential
Function for HPC. Proceedings of FPL 2007, pp. 718-721 (2007)

7. Wielgosz, M., Jamro, E., Wiatr, K.: Highly Efficient Structure of 64-bit Exponential
Function Implemented in FPGAs. Proceedings of ARC 2008, pp. 274279, London,
UK (2008)

8. Doss, C. C., Robert, J., Riley, L.: FPGA-based Implementation of a Robust IEEE-
754 Exponential Unit. Proceedings of FCCM 2004, pp. 229-238 (2004)

9. de Dinechin, F., Klein, C., Pasca, B.: Generating High-Performance Custom
Floating-Point Pipelines. Proceedings of FPL 2009, Prague (2009)

10. Detrey, J., de Dinechin, F.: Parameterized Floating-Point Logarithm and Expo-
nential Functions for FPGAs. Proceedings of Microprocess. Microsyst., pp. 537545
(2007)

11. Alachiotis, N., Stamatakis, A.: Efficient Floating-Point Logarithm Unit for FPGAs.
Proceedings of RAW2010, pp. 1-8, Atlanta, GA, USA (2010)

12. Volder, J. E.: The CORDIC trigonometric computing technique. Proceedings of
IRE Transactions on Electronic Computers, pp. 330-334 (1959)

13. Walther, J. S.: A Unified Algorithm for Elementary Functions. Spring Joint Com-
puter Conference, pp. 379-385 (1971)

14. Burkardt, J.: CORDCIC Approximation of Elementary Functions.
http://people.sc.fsu.edu/ burkardt/cpp-src/cordic/cordic.html (last visited: 17-
05-2010)

15. Xilinx: Floating Point Operator v.4.0. http://www.xilinx.com/support/docu-
mentation/ip_documentation /floating_point_ds335.pdf (last visited: 17-05-2010)

16. Boudabous, A., Ghozzi, F., Kharrat, M., Masmoudi, N.: Implementation of Hyper-
bolic Functions using CORDIC Algorithm. Proceedings of ICM 2001, pp. 738-741
(2004)

17. McGrath, R.: GNU C Library. http://www.gnu.org/software/libc (last visited: 17-
05-2010)

18. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. pp. 5-48 (1991)

19. Intel: Intel Math Kernel Library Reference Manual.
http://www.intel.com/software/products/mkl/docs/ WebHelp/mkl.htm

20. Goldman, N., Anderson, J.P., Rodrigo, A.G.: Likelihood-based tests of topologies
in phylogenetics. Systematic Biology, vol. 49, no. 4, pp. 652-670 (2000)

21. Shimodaira, H., Hasegawa, M.: CONSEL: for assessing the confidence of phyloge-
netic tree selection. Bioinformatics, vol. 17, no. 12, pp. 1246 (2001)

