
Minimising processor communication in parallel approximate string

matching

Christos Hadjinikolis and Costas S. Iliopoulos

Department of Informatics

King’s College London

London, UK

{christos.hadjinikolis, c.iliopoulos}@kcl.ac.uk

Solon P. Pissis and Alexandros Stamatakis

Scientific Computing group

Heidelberg Institute for Theoretical Studies

Heidelberg, Germany

{solon.pissis, alexandros.stamatakis}@h-its.org

Abstract—In this report, we focus on the efficient
parallelisation of approximate string-matching algo-
rithms, which are based on dynamic programming,
using the message-passing programming paradigm.
We first present the decomposition and the mapping
technique of the proposed parallel system. Then, we
show a number of properties that follow from the
application of this system, and use them to min-
imise the amount of point-to-point communication
in each parallel step. We therefore provide a new
cost-optimal parallel system, which can be directly
and effectively applied to any approximate string-
matching algorithm with analogous characteristics.
We show that, from a practical point of view,
the proposed system reduces the time for point-
to-point communication up to five times compared
to the naı̈ve version of it, and that it can match,
and also outperform, the classic parallel system
introduced by Edmiston et al. in 1988. Finally, we
provide a performance predictor that can be used
to accurately and efficiently predict the performance
of Edmiston’s and our system for given input data.

Keywords-algorithms on strings; parallel algo-
rithms; message-passing programming paradigm;
dynamic programming; wave-front parallelism

INTRODUCTION

The problem of finding factors of a text similar

to a given pattern has been intensively studied over

the past decades, and it is a central problem for a

wide range of applications, including signal pro-

cessing [8], information retrieval [12], searching

for similarities among biological sequences [11],

file comparison [3], and spelling correction [9].

Approximate string matching, in general, con-

sists in locating all occurrences of factors inside

a text t that are similar to a pattern x. It consists
in producing the positions of the factors of t that
are at a distance of at most k from x, for a

given natural number k. In particular, we consider

the edit distance for measuring the approximation.

The edit distance between two strings, not neces-

sarily of the same length, is the minimum cost of

a series of elementary edit operations to transform

one string into the other.

A parallel system is the combination of an al-

gorithm and the parallel architecture on which it is

implemented and executed. There has been ample

work in the literature for devising parallel systems,

using different models of computation, parallel

architectures, and programming paradigms, for the

approximate string-matching problem (cf. [1], [4],

[7], [10]). Here, we focus on the efficient par-

allelisation of approximate string-matching algo-

rithms, which are based on dynamic programming,

using the message-passing programming (MPP)

paradigm.

As an example of an approximate string-

matching algorithm, one may consider any algo-

rithm using the edit distance, such as the classic al-

gorithm for computing the edit distance [8], algo-

rithm MAXSHIFT [5] for fixed-length approximate

string matching, the well-established algorithm for

solving the longest common subsequence prob-

lem [12], or the Smith-Waterman algorithm [13]

for performing local sequence alignment. The

common characteristic of these algorithms is the

computation of a dynamic-programming matrix

D[0 . . n, 0 . .m], where n is the length of the text,

and m ≤ n is the length of the pattern. Another

key property is that each cell D[i, j] of the matrix

can be computed only using cells D[i − 1, j],
D[i− 1, j − 1], and D[i, j − 1].
We first present the decomposition and the map-

ping technique of the cost-optimal parallel system,

introduced in [6], which makes use of wave-

front parallelism in the MPP paradigm. Then, we

demonstrate a number of properties that follow

from the application of this system, and use them

to minimise the amount of point-to-point commu-

nication in each parallel step. We therefore provide

a new cost-optimal parallel system that can be

directly and effectively applied to any approximate

string-matching algorithm with analogous charac-

teristics.

The rest of this report is structured as follows.

In Section I, we describe the model of commu-

nication in the parallel computer. In Section II,

we provide a detailed description of the proposed

parallel system. In Section III, we present exten-

sive experimental results, which demonstrate that

the proposed system reduces the time for point-to-

point communication up to five times compared to

the one introduced in [6], and that it can match,

and also outperform, the classic parallel system

introduced by Edmiston et al. [1] in 1988. We

also provide a performance predictor that can

be used to accurately and efficiently predict the

performance of these systems for given input data.

We conclude in Section IV.

I. MODEL OF COMMUNICATION

We make the following assumptions for the

model of communication: (i) the parallel computer

comprises a number of nodes and (ii) each node

comprises one or several identical processors inter-

connected by a switched communication network.

Although the latencies for intra- and inter-node

communication can vary substantially in practice,

we assume, as an abstraction, that the time taken

to send a message of size s between any two nodes
is independent of the distance between nodes, and

can be modeled as tcomm = ts + stw, where

ts is the latency of the message, and tw is the

transfer time per data. The communication links

between two nodes are bidirectional and single-

ported, that is, a message can be simultaneously

transferred in both directions via the link, and only

one message can be sent, and one message can be

received at the same time. We assume that the

input of size n + m is stored locally on each

node. This can be achieved by using an initial,

one-time-only, broadcast operation one-to-all in

communication time (ts+(n+m)tw) log p, which
is asymptotically O(n log p), where p is the total

number of available processors.

II. THE PROPOSED PARALLEL SYSTEM

A. Decomposition technique

We make use of the functional decomposition

technique, in which the initial focus is on the

computation that is to be performed, rather than

on the data manipulated by the computation. The

main observation for introducing parallelism is

that cell D[i, j] can be computed using cells

D[i− 1, j], D[i− 1, j − 1], and D[i, j − 1]. Based
on this, if we partition the problem of computing

matrix D into a set {∆0,∆1, . . . ,∆n+m} of anti-

diagonal arrays—also known as a sequence of

parallel wavefronts of a computation—as shown in

Equation 1, the computation of each cell in each

diagonal is independent from the other cells of the

same diagonal, and can be executed concurrently.

The size of ∆ν , that is, the number of cells of ∆ν ,

is denoted by δν .

∆ν [x] =











D[ν − x, x] : 0 ≤ x ≤ ν (a)
D[ν − x, x] : 0 ≤ x < m+ 1 (b)
D[n− x, ν − n+ x] :
0 ≤ x < n+m− ν + 1 (c)

(1)

where
(a) if 0 ≤ ν < m
(b) if m ≤ ν < n
(c) if n ≤ ν < n+m+ 1

B. Mapping technique

Regarding the mapping of tasks to the avail-

able processors, we distribute the computation of

the cells for each diagonal among the available

processors. We assume, without loss of generality,

that for each diagonal array ∆ν , each processor r,
for 0 ≤ r < p, is assigned δν/p contiguous cells

of ∆ν . The mapping is described by Equation 2.

fr

ν
= r⌈δν/p⌉

lr
ν
= fr

ν
+ ⌈δν/p⌉ − 1

if r < δν mod p

fr

ν
= r⌊δν/p⌋+ δν mod p

lr
ν
= fr

ν
+ ⌊δν/p⌋ − 1

otherwise

(2)

It relies on calculating both, the indices fr

ν
and

lr
ν
of the first and the last cell of ∆ν mapped to

processor r, respectively. In other words, processor
r is assigned the computation of ∆ν [f

r

ν
. . lr

ν
] (see

Fig. 1 for ν = 13 and ν = 23). Trivially, the aux-

iliary space required is O(m/p), as each diagonal

depends only on the two immediately preceding

diagonals. Although there also exist cost-optimal

parallel algorithms in terms of space [4], [10],

these come with a runtime overhead, in practice,

to find the partial balanced partition of the text

and the pattern (see [10] for details).

Furthermore, it is necessary to introduce the

notion of neighbouring. We say that two discrete

processors r and q > r are neighbouring if and

only if lr
ν
= ∆ν [x] and fq

ν
= ∆ν [x+1], for some

x, where 0 ≤ x < δν − 1.

C. Properties of the system

For each sequence ν − 2, ν − 1, ν of parallel

steps, where 2 ≤ ν < n +m + 1, we distinguish

among the following cases:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 l3
13

1

2 f3
13

3 l2
13

4 ·
5 f2

13
·

6 l1
13

ց l3
23

7 ·
8 · · f3

23

9 f1
13

· l2
23

10 l0
13

ց
11 · f2

23

12 · · l1
23

13 f0
13

·
14 ց f1

23

15 · l0
23

16 ·
17 f0

23

r = 0

r = 1

r = 2

r = 3

Figure 1. Mapping of the cells of matrix D to the available processors for n = m = 17 and p = 4

1) δν−1 − δν−2 = 1 and δν − δν−1 = 1
2) δν−1 − δν−2 = 1 and δν − δν−1 = 0
3) δν−1 − δν−2 = 1 and δν − δν−1 = −1
4) δν−1 − δν−2 = 0 and δν − δν−1 = −1
5) δν−1 − δν−2 = 0 and δν − δν−1 = 0
6) δν−1 − δν−2 = −1 and δν − δν−1 = −1

For each set {D[i, j],D[i− 1, j],D[i, j − 1]} of

cells, where 1 ≤ i ≤ n and 1 ≤ j ≤ m, we list the

following immediate observations obtained from

the problem decomposition (see Equation 1 in the

Appendix):

Observation 1: If δν − δν−1 = 0 and D[i, j] =
∆ν [x], then D[i−1, j] = ∆ν−1[x] and D[i, j−1] =
∆ν−1[x− 1], for some x, where 1 ≤ x < δν .

Observation 2: If δν−δν−1 = −1 and D[i, j] =
∆ν [x], then D[i−1, j] = ∆ν−1[x+1] and D[i, j−
1] = ∆ν−1[x], for some x, where 0 ≤ x < δν −1.

Observation 3: If δν − δν−1 = 1 and D[i, j] =
∆ν [x], then D[i−1, j] = ∆ν−1[x] and D[i, j−1] =
∆ν−1[x− 1], for some x, where 1 ≤ x < δν .

Lemma 1: If a processor r is assigned cell

D[i, j] of ∆ν , such that ν > r, then r will also be

assigned at least one of the cells D[i − 1, j] and
D[i, j − 1] of ∆ν−1.

Proof: Without loss of generality, assume that

cell D[i, j] = ∆ν [x] is mapped to processor r.
Then, fr

ν
≤ x ≤ lr

ν
holds. We distinguish among

the following cases:

1) δν − δν−1 = 0: then, trivially, it holds

fr

ν−1 = fr

ν
≤ x ≤ lr

ν
= lr

ν−1. From

Observation 1, D[i − 1, j] = ∆ν−1[x], and,
hence, D[i− 1, j] is mapped to r.

2) δν − δν−1 = −1: then, from Observa-

tion 2, D[i − 1, j] = ∆ν−1[x + 1] and

D[i, j − 1] = ∆ν−1[x]. If the one extra cell

of ∆ν−1 (δν − δν−1 = −1) is mapped to a

processor q > r, then it holds fr

ν−1 = fr

ν

and lr
ν−1 = lr

ν
. It follows that fr

ν−1 = fr

ν
≤

x ≤ lr
ν−1 = lr

ν
, hence, ∆ν−1[x] is also

mapped to r. If the one extra cell of ∆ν−1 is

mapped to a processor q = r, then it holds

fr

ν−1 = fr

ν
and lr

ν−1 = lr
ν
+ 1. It follows

that fr

ν−1 = fr

ν
≤ x + 1 ≤ lr

ν
+ 1 = lr

ν−1,

hence,∆ν−1[x+1] is mapped to r. If the one
extra cell of ∆ν−1 is mapped to a processor

q < r, then it holds fr

ν−1 = fr

ν
+ 1 and

lr
ν−1 = lr

ν
+ 1. It follows that fr

ν−1 =
fr

ν
+ 1 ≤ x + 1 ≤ lr

ν
+ 1 = lr

ν−1, hence,

∆ν−1[x+ 1] is mapped to r.
3) δν − δν−1 = 1: then, from Observation 3,

D[i − 1, j] = ∆ν−1[x] and D[i, j − 1] =
∆ν−1[x − 1]. If the one extra cell of ∆ν

(δν − δν−1 = 1) is mapped to a processor

q > r, then it holds fr

ν−1 = fr

ν
and

lr
ν−1 = lr

ν
. It follows that fr

ν−1 = fr

ν
≤ x ≤

lr
ν−1 = lr

ν
, hence, ∆ν−1[x] is also mapped

to r. If the one extra cell of ∆ν is mapped to

a processor q = r, then it holds fr

ν−1 = fr

ν

and lr
ν−1 = lr

ν
−1. In case fr

ν
< x = lr

ν
, then

it holds fr

ν−1 = fr

ν
≤ x−1 = lr

ν
−1 = lr

ν−1,

hence, ∆ν−1[x− 1] is mapped to r. In case

fr

ν
≤ x < lr

ν
, then it holds fr

ν−1 = fr

ν
≤

x ≤ lr
ν
− 1 = lr

ν−1, hence, ∆ν−1[x] is

mapped to r. If the one extra cell of ∆ν is

mapped to a processor q < r, then it holds

fr

ν−1 = fr

ν
−1 and lr

ν−1 = lr
ν
−1. It follows

that fr

ν−1 = fr

ν
−1 ≤ x−1 ≤ lr

ν
−1 = lr

ν−1,

hence, ∆ν−1[x− 1] is mapped to r.

Lemma 2: There exist no four cells

D[i, j],D[i − 1, j],D[i, j − 1],D[i − 1, j − 1],
where 1 ≤ i ≤ n and 1 ≤ j ≤ m, the calculation

of the content of which is mapped to more than

two discrete neighbouring processors.

Proof: Without loss of generality, assume that

cell D[i, j] = ∆ν [x] is mapped to processor r.
Then it holds fr

ν
≤ x ≤ lr

ν
. We distinguish among

the following cases:

1) δν−1 − δν−2 = 1 and δν − δν−1 = 1:
From Observation 3, D[i− 1, j] = ∆ν−1[x],
D[i, j − 1] = ∆ν−1[x− 1], and D[i− 1, j −
1] = ∆ν−2[x− 1].

(a) If the one extra cell of ∆ν (δν − δν−1 =
1) is mapped to a processor q > r, then
∆ν−1[x] is also mapped to r (see Lemma 1

Case 3). It follows that ∆ν−1[x − 1] is

allocated either to r or to r − 1.

If ∆ν−1[x − 1] is mapped to r then it

holds fr

ν−1 ≤ x − 1 < lr
ν−1. If the one

extra cell of ∆ν−1 (δν−1 − δν−2 = 1) is

mapped to a processor q > r then it holds

fr

ν−2 = fr

ν−1 and lr
ν−2 = lr

ν−1. It follows

that fr

ν−2 = fr

ν−1 ≤ x − 1 < lr
ν−1 = lr

ν−2,

hence, ∆ν−2[x− 1] is also mapped to r. If
the one extra cell of∆ν−1 (δν−1−δν−2 = 1)
is mapped to a processor q ≤ r then it holds

fr

ν−2 ≤ fr

ν−1 and l
r

ν−2 = lr
ν−1−1. It follows

that fr

ν−2 ≤ fr

ν−1 ≤ x − 1 < lr
ν−1 − 1 =

lr
ν−2, hence, ∆ν−2[x− 1] is also mapped to

r.

If ∆ν−1[x − 1] is mapped to r − 1 then it

holds fr−1

ν−1 ≤ x − 1 = lr−1

ν−1. If the one

extra cell of ∆ν−1 (δν−1 − δν−2 = 1) is

mapped to a processor q > r−1 then it holds
fr−1

ν−2 = fr−1

ν−1 and lr−1

ν−2 = lr−1

ν−1. It follows

that fr−1

ν−2 = fr−1

ν−1 ≤ x − 1 = lr−1

ν−2 = lr−1

ν−1,

hence,∆ν−2[x−1] is also mapped to r−1. If
the one extra cell of∆ν−1 (δν−1−δν−2 = 1)
is mapped to a processor q ≤ r − 1 then it

holds fr

ν−2 = lr−1

ν−1. It follows that fr

ν−2 =
x− 1, hence, ∆ν−2[x− 1] is mapped to r.

(b) If the one extra cell of ∆ν (δν − δν−1 =
1) is mapped to a processor q ≤ r, then,
we also have to examine the case when

∆ν−1[x− 1] is also mapped to r, such that

fr

ν−1 ≤ x−1 = lr
ν−1 (see Lemma 1 Case 3).

It follows that ∆ν−1[x] is mapped to r+1.
Similarly, as in the case when ∆ν−1[x] is
mapped to r, and ∆ν−1[x − 1] is mapped

either to r or to r − 1 (see Case 1(a)), we

obtain that ∆ν−2[x− 1] is mapped either to

r or to r + 1.

2) δν−1 − δν−2 = 1 and δν − δν−1 = 0: From
Observations 1 and 3, D[i−1, j] = ∆ν−1[x],
D[i, j − 1] = ∆ν−1[x− 1], and D[i− 1, j −
1] = ∆ν−2[x− 1].

Since δν = δν−1, ∆ν−1[x] is also mapped

to r (see Lemma 1 Case 1). It follows that

∆ν−1[x − 1] is mapped either to r or to

r − 1. If ∆ν−1[x − 1] is mapped to r then

∆ν−2[x− 1] is also mapped to r (see Case

1(a)). If ∆ν−1[x − 1] is mapped to r − 1,
then ∆ν−2[x − 1] is mapped either to r or

to r − 1 (see Case 1(a)).

3) δν−1 − δν−2 = 1 and δν − δν−1 = −1:
From Observation 2 and 3, D[i − 1, j] =
∆ν−1[x + 1], D[i, j + 1] = ∆ν−1[x], and
D[i− 1, j − 1] = ∆ν−2[x].

(a) If the one extra cell of ∆ν−1 (δν −
δν−1 = −1) is mapped to a processor

q > r, then ∆ν−1[x] is also mapped to

r (see Lemma 4 Case 2). It follows that

∆ν−1[x + 1] is mapped either to r or to

r + 1. ∆ν−2[x] is mapped to r since ∆ν [x]
is mapped to r and δν = δν−2.

(b) If the one extra cell of ∆ν−1 (δν −
δν−1 = −1) is mapped to a processor q ≤ r,
then ∆ν−1[x + 1] is also mapped to r (see

Lemma 4 Case 2). It follows that ∆ν−1[x]
is mapped either to r or to r − 1. ∆ν−2[x]
is mapped to r since ∆ν [x] is mapped to r
and δν = δν−2.

4) δν−1 − δν−2 = 0 and δν − δν−1 = −1:
From Observation 1 and 2, D[i − 1, j] =
∆ν−1[x + 1], D[i, j + 1] = ∆ν−1[x], and
D[i− 1, j − 1] = ∆ν−2[x].

(a) If the one extra cell of ∆ν−1 (δν −
δν−1 = −1) is mapped to a processor

q > r, then ∆ν−1[x] is also mapped to

r (see Lemma 4 Case 2). It follows that

∆ν−1[x+1] is mapped either to r or to r+1.
∆ν−2[x] is mapped to r since ∆ν−1[x] is
mapped to r and δν−2 = δν−1.

(b) If the one extra cell of ∆ν−1 (δν −
δν−1 = −1) is mapped to a processor

q ≤ r, then ∆ν−1[x + 1] is also mapped

to r (see Lemma 4 Case 2). It follows that

∆ν−1[x] is mapped either to r or to r − 1.
If ∆ν−1[x] is mapped to r, then ∆ν−2[x]
is also mapped to r since δν−1 = δν−2. If

∆ν−1[x] is mapped to r − 1, then ∆ν−2[x]
is also mapped to r− 1 since δν−1 = δν−2.

5) δν−1 − δν−2 = 0 and δν − δν−1 = 0:
From Observation 1, D[i− 1, j] = ∆ν−1[x],
D[i, j +1] = ∆ν−1[x− 1], and D[i− 1, j +
1] = ∆ν−2[x− 1].

Since δν−1 = δν , ∆ν−1[x] is also mapped

to r (see Lemma 1 Case 1). It follows that

∆ν−1[x − 1] is mapped either to r or to

r − 1. If ∆ν−1[x − 1] is mapped to r,
then ∆ν−2[x− 1] is also mapped to r since

δν−2 = δν−1. If ∆ν−1[x − 1] is mapped to

r − 1, then ∆ν−2[x − 1] is also mapped to

r − 1 since δν−2 = δν−1.

6) δν−1 − δν−2 = −1 and δν − δν−1 = −1:
From Observation 2, D[i−1, j] = ∆ν−1[x+
1], D[i, j + 1] = ∆ν−1[x], and D[i− 1, j −
1] = ∆ν−2[x+ 1].

(a) If the one extra cell of ∆ν−1 (δν −
δν−1 = −1) is mapped to a processor

q > r, then ∆ν−1[x] is also mapped to

r (see Lemma 4 Case 2). It follows that

∆ν−1[x + 1] is allocated either to r or to

r + 1.

If ∆ν−1[x+1] is mapped to r then it holds

fr

ν−1 < x+1 ≤ lr
ν−1. If the one extra cell of

∆ν−2 (δν−1 − δν−2 = −1) is mapped to a

processor q > r then it holds fr

ν−2 = fr

ν−1

and lr
ν−2 = lr

ν−1. It follows that fr

ν−2 =
fr

ν−1 < x + 1 ≤ lr
ν−1 = lr

ν−2, hence,

∆ν−2[x+1] is also mapped to r. If the one

extra cell of ∆ν−2 (δν−1 − δν−2 = −1) is
mapped to a processor q = r then it holds

fr

ν−2 = fr

ν−1 and l
r

ν−2 = lr
ν−1+1. It follows

that fr

ν−2 = fr

ν−1 < x+1 ≤ lr
ν−2 = lr

ν
+1,

hence, ∆ν−2[x+ 1] is also mapped to r. If

the one extra cell of ∆ν−2 (δν−1 − δν−2 =
−1) is mapped to a processor q < r then it

holds fr

ν−2 = fr

ν−1+1 and lr
ν−2 = lr

ν−1+1.
It follows that fr

ν−2 = fr

ν−1 + 1 < x+ 1 ≤
lr
ν
+ 1 = lr

ν−2, hence, ∆ν−2[x + 1] is also

mapped to r.

If ∆ν−1[x + 1] is mapped to r + 1 then it

holds fr+1

ν−1 = x + 1 ≤ lr+1

ν−1. If the one

extra cell of ∆ν−2 (δν−1 − δν−2 = −1) is
mapped to a processor q ≥ r+1 then it holds
fr+1

ν−2 = fr+1

ν−1 and lr+1

ν−2 ≥ lr+1

ν−1. It follows

that fr+1

ν−2 = fr+1

ν−1 = x + 1 ≤ lr+1

ν−1 ≤ lr+1

ν−2,

hence,∆ν−2[x+1] is also mapped to r+1. If
the one extra cell of ∆ν−2 (δν−1 − δν−2 =
−1) is mapped to a processor q < r + 1
then it holds lr

ν−2 = fr+1

ν−1 . It follows that

lr
ν−2 = x+1, hence, ∆ν−2[x+1] is mapped

to r.

(b) If the one extra cell of ∆ν−1 (δν −
δν−1 = −1) is mapped to a processor q ≤ r,
then ∆ν−1[x + 1] is also mapped to r (see

Lemma 4 Case 2). It follows that ∆ν−1[x]
is mapped either to r or to r − 1. Similarly

as in the case when ∆ν−1[x] is mapped to

r, and ∆ν−1[x + 1] is mapped either to r
or to r + 1 (see Case 6(a)), we obtain that

∆ν−2[x+1] is mapped either to r or to r−1.

Lemma 3: For the computation of ∆ν , each

processor only needs to send the content of a num-

ber of cells of ∆ν−1 to neighbouring processors.

Proof: Let us assume that for the computation

of cell D[i, j] = ∆ν [x] mapped to a processor r,
processor r−1 (resp. r+1 by Lemma 2) needs to

send the content of cell D[i−1, j−1] of ∆ν−2 to

r. This implies that, for the calculation of ∆ν−1, it

was not necessary for processor r−1 (resp. r+1)
to send the calculated content of D[i−1, j−1] to r.
This further implies that neither cell D[i, j−1] nor
D[i−1, j] of∆ν−1 were mapped to r. Hence, since
cell D[i− 1, j − 1] of ∆ν−2 was mapped to r− 1
(resp. r+1), then both of these cells must also have

been mapped to r − 1 (resp. r + 1) by Lemma 2.

But if those cells were mapped to r−1 (resp. r+1)
for calculating ∆ν−1, it is definitely the case that

cell D[i, j] of ∆ν will also be mapped to r − 1
by Lemma 1. Thus, we obtain a contradiction, and

the lemma holds.

Corollary 1: For the computation of ∆ν , each

processor only needs to receive the content of

a number of cells of ∆ν−1 from neighbouring

processors.

Proof: Direct consequence of Lemma 3.

Lemma 4: For the computation of ∆ν , proces-

sor r needs to receive the contents of at most two

cells, ∆ν−1[l
r−1

ν−1] and ∆ν−1[f
r+1

ν−1], from neigh-

bouring processors r − 1 and r + 1, respectively.

Proof: Without loss of generality, assume that

cell D[i, j] is mapped to processor r. From the

proof of Lemma 2, we distinguish among the

following cases (see Fig. 2 in this regard):

1) D[i − 1, j], D[i, j − 1], and D[i − 1, j − 1]
are mapped to r.

2) D[i − 1, j] is mapped to r, and D[i, j − 1]
and D[i− 1, j − 1] are mapped to r − 1.

3) D[i − 1, j] and D[i − 1, j − 1] are mapped

to r, and D[i, j − 1] is mapped to r − 1.
4) D[i, j − 1] is mapped to r, and D[i − 1, j]

and D[i− 1, j − 1] are mapped to r + 1.
5) D[i, j − 1] and D[i − 1, j − 1] are mapped

to r, and D[i− 1, j] is mapped to r + 1.

We eliminate Case 1 since all cells are mapped

to r. By Lemma 3 and Corollary 1, the problem

is reduced to the following two cases:

• D[i − 1, j] is mapped to r and D[i, j − 1]
is mapped to r − 1. Clearly, r − 1 needs to

send D[i, j − 1] = ∆ν−1[l
r−1

ν−1] to r for the

computation of D[i, j].
• D[i, j − 1] is mapped to r and D[i − 1, j]

is mapped to r + 1. Clearly, r + 1 needs to

send D[i − 1, j] = ∆ν−1[f
r+1

ν−1] to r for the

computation of D[i, j].

r − 1 r r + 1

Figure 2. The five possible mappings of the set of cells
{D[i, j],D[i− 1, j],D[i, j− 1],D[i− 1, j− 1]} to processors
r − 1, r, and r + 1, given that D[i, j] is mapped to r

Corollary 2: For the computation of ∆ν , pro-

cessor r needs to send the contents of at most two

cells, ∆ν−1[l
r−1

ν−1] and ∆ν−1[f
r+1

ν−1], to neighbour-

ing processors r − 1 and r + 1, respectively.
Proof: Direct consequence of Lemma 4.

D. Processor communication

Algorithm PP-COMM provides the point-to-

point communication between r, r− 1, and r+ 1

at step ν. It takes as input the size n of the text,

the diagonal array ∆ν , the indices f
r

ν
and lr

ν
of the

first and the last cell of ∆ν mapped to processor

r, respectively. It also needs as input the indices

fr

ν+1 and lr
ν+1 of the first and the last cell of ∆ν

mapped to processor r, respectively.

By Observations 1–3, we obtain two cases: the

case where ν < n (Algorithm PP-COMM line 1)
by Observations 1 and 3 (δν−δν−1 ∈ {0, 1}), and
the case where ν ≥ n (Algorithm PP-COMM line

10) by Observation 2 (δν−δν−1 = −1). By Corol-

lary 2, for the computation of ∆ν+1, processor r
needs to send the contents of at most two cells,

∆ν [f
r

ν
] and ∆ν [l

r

ν
], to neighbouring processors

r − 1 (Algorithm PP-COMM lines 5 and 14) and
r + 1 (Algorithm PP-COMM lines 3 and 12),
respectively. Hence, the data exchange between

the processors in Algorithm PP-COMM involves a

constant number of point-to-point message trans-

fers at each step. Since the number of cells to be

computed is Θ(nm), the number of parallel steps

is Θ(n)—exactly n+m+1 diagonals—and each

processor is assigned the computation of O(m/p)
cells—the size of each diagonal is O(m)—at each

parallel step, we obtain the following result.

Theorem 1: The proposed parallel system is

cost-optimal.

ALGORITHM PP-COMM(r, n, ν, ∆ν , f
r

ν
, lr

ν
,

fr

ν+1, l
r

ν+1)

1: if ν < n then

2: if (fr

ν+1 ≤ lr
ν
+ 1 ≤ lr

ν+1) = false then

3: r sends ∆ν [l
r

ν
] to r + 1

4: if (fr

ν+1 ≤ fr

ν
≤ lr

ν+1) = false then

5: r sends ∆ν [f
r

ν
] to r − 1

6: if (fr

ν
≤ fr

ν+1 − 1 ≤ lr
ν
) = false then

7: r receives ∆ν [f
r

ν
] from r − 1

8: if (fr

ν
≤ lr

ν+1 ≤ lr
ν
) = false then

9: r receives ∆ν [l
r

ν
] from r + 1

10: else

11: if (fr

ν+1 ≤ lr
ν
≤ lr

ν+1) = false then

12: r sends ∆ν [l
r

ν
] to r + 1

13: if (fr

ν+1 ≤ fr

ν
− 1 ≤ lr

ν+1) = false then

14: r sends ∆ν [f
r

ν
] to r − 1

15: if (fr

ν
≤ lr

ν+1 + 1 ≤ lr
ν
) = false then

16: r receives ∆ν [l
r

ν
] from r + 1

17: if (fr

ν
≤ fr

ν+1 ≤ lr
ν
) = false then

18: r receives ∆ν [f
r

ν
] from r − 1

Furthermore, if D[i − 1, j] = ∆ν [l
r

ν
] is the last

cell mapped to r in step ν, then, by checking if

D[i, j] is mapped to r (Algorithm PP-COMM lines

2 and 11), we know whether r should send the

content of D[i−1, j] to r+1 or not. Analogously,

if D[i, j−1] = ∆ν [f
r

ν
] is the first cell mapped to r

in step ν, then, by checking if D[i, j] is mapped to

r (Algorithm PP-COMM lines 4 and 13), we know
whether r should send the content of D[i, j − 1]
to r − 1 or not. Hence we obtain the following

result:

Theorem 2: The point-to-point communication

in Algorithm PP-COMM is minimal for the pro-

posed parallel system.

III. EXPERIMENTAL RESULTS

In order to evaluate the parallel efficiency of the

proposed parallel system, we implemented algo-

rithm MAXSHIFT in the C programming language,

and parallelised it using the Message Passing In-

terface (MPI), which supports the MPP paradigm,

implementing programme OPASM, which uses the

proposed optimised parallel system. DNA se-

quences of the single chromosome of Escherichia

coli str. K-12 substr. MG1655, obtained from Gen-

Bank [2], were used as input for the programme.

Experimental results regarding the elapsed time of

OPASM for different problem sizes are provided in

Fig. 3a. The measured relative speed-up of OPASM

is illustrated in Fig. 3b. The relative speed-up was

calculated as the ratio of the runtime of the parallel

algorithm on 1 processor to the runtime of the

parallel algorithm on p processors—the runtime of

the parallel algorithm on 1 processor was identical

to the sequential one. The experiments highlight

the good scalability of OPASM, even for small

problem sizes. When increasing the problem size,

OPASM achieves linear speed-ups and confirms

our theoretical results.

In order to relate the amount of point-to-point

communication of OPASM to other parallel sys-

tems, we also parallelised algorithm MAXSHIFT

with MPI, implementing programme PASM, which

uses the parallel system introduced in [6]. The

only difference from OPASM is that processor

communication in PASM involves point-to-point

boundary cell swaps between all neighbouring

processors at each parallel step. Two different ver-

sions were used for each of the two programmes:

one with blocking send operations (MPI Send);

and one with blocking synchronous send oper-

ations (MPI Ssend). We measured the elapsed

point-to-point communication time of PASM and

OPASM (Algorithm PP-COMM) for different prob-

lem sizes by commenting out the computation

phase of both programmes. The main contribution

of this report becomes apparent from Fig. 4: (i) the

time for point-to-point communication of OPASM

 1

 10

 100

 1000

 10000

 100000 200000 300000 400000 500000

E
la

p
s
e
d
 t
im

e
 [
lo

g
 s

]

Text length [bp]

p=1
p=12
p=24
p=48
p=96

p=192
p=384

(a) Elapsed time of OPASM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 12 24 48 96 192 384

S
p
e
e
d
-u

p
 [
-]

Number of processors [-]

Linear speed-up
Measured speed-up

(b) Measured speed-up of OPASM

Figure 3. Elapsed time of OPASM for n = m, and measured
speed-up of OPASM for n = m = 500K

is reduced up to five times with blocking send

operations (Fig. 4a) and up to ten times with

blocking synchronous send operations (Fig. 4b);

(ii) at a certain point, the amount of point-to-point

communication of OPASM becomes essentially

constant (note that, the curves of OPASM on 96

and 192 processors coincide both, in Fig. 4a and

in Fig. 4b).

In order to relate the overall performance of

OPASM to other parallel systems, we parallelised

algorithm MAXSHIFT with MPI, implementing

programme EDM, which uses the classic parallel

system introduced by Edmiston et al. Since la-

tency of communication ts is usually much worse

than communication bandwidth tw, the system by

Edmiston et al. strives to minimise the number

of point-to-point communications by sending the

content of Θ(m/p) cells Θ(p) times—while the

proposed parallel system sends the content of

O(1) cells Θ(n) times. In the system proposed by

Edmiston et al., the dynamic-programming matrix

is decomposed into a p×p matrix of submatrices.

Each processor q, 0 ≤ q < p, is assigned a

row of p submatrices, and processor q, q > 0,
starts computing the first submatrix of its row

 1

 10

 100

 1e+06 2e+06 3e+06 4e+06

E
la

p
s
e
d
 t
im

e
 [
lo

g
 s

]

Text length [bp]

PASM p=48
OPASM p=48

PASM p=96
OPASM p=96
PASM p=192

OPASM p=192

(a) Blocking send

 100

 1000

 10000

 100000

 1e+06 2e+06 3e+06 4e+06

E
la

p
s
e
d
 t
im

e
 [
lo

g
 s

]

Text length [bp]

PASM p=48
OPASM p=48

PASM p=96
OPASM p=96
PASM p=192

OPASM p=192

(b) Blocking synchronous send

Figure 4. Elapsed time of the point-to-point communication of
PASM and OPASM with blocking send operation and blocking
synchronous send operation

only when processor q − 1 has already computed

the first submatrix of its row, resulting in a total

of 2p − 1 parallel steps. When q, q < p − 1,
finishes the computation of a submatrix, it must

send Θ(m/p) cells (the last row) of the submatrix

that has been computed to processor q+1. Hence,
in total, this system communicates only Θ(p)
times. This approach exhibits two disadvantages:

(i) the matrix size in either dimension must be a

multiple of the number of processors; (ii) since

processor q does not start computing until step

q, this generates load imbalance, in particular for

large submatrices.

We used the aforementioned dataset as input for

EDM and OPASM. The elapsed times of EDM and

OPASM are provided in Fig. 5. These experimental

results confirm our theoretical findings: OPASM

is more efficient than EDM for small processor

counts and problems of large size. However, as

we increase the number of processors, the size of

submatrices computed by EDM decreases, and the

two systems exhibit comparable performance.

Finally, we also implemented programme PRE,

a performance predictor for EDM and OPASM. PRE

 0

 100

 200

 300

 400

 500

 600

 700

48 96 192 384

E
la

p
s
e
d
 t
im

e
 [
s
]

Processors [-]

EDM 768K x 768K
OPASM 768K x 768K

EDM 384K x 384K
OPASM 384K x 384K

Figure 5. Elapsed time of EDM and OPASM for n = m =
384K and n = m = 768K

uses the theoretical results presented in [1] and

in Section II to accurately and efficiently predict

the performance of EDM and OPASM, respectively.

The performance of EDM can be predicted by

measuring the sum of the processor idle time, the

sum of per submatrix calculation time, and the

sum of communication times for Θ(m/p) cells.

The performance of OPASM can be predicted by

measuring the sum of calculation time per anti-

diagonal, and the sum of communication costs

times for exchanging O(1) (at most two) cells

per anti-diagonal. Experimental results for the

performance prediction of EDM and OPASM are

provided in Fig. 6. The results demonstrate that

the predictor is highly accurate. PRE only takes a

few seconds to execute. It performs a number of

iterations to measure the aforementioned average

time costs. Users can chose to increase the number

of iterations in the predictor to further increase

its accuracy at the expense of longer predictor

runtimes.

 0

 50

 100

 150

 200

48 96 192

E
la

p
s
e
d
 t
im

e
 [
s
]

Processors [-]

EDM PRE
EDM

OPASM PRE
OPASM

Figure 6. Performance prediction for n = m = 384K

The experiments were conducted on an

Infiniband-connected cluster using 1 up to 384

2.4 GHz AMD 6136 processors under the Linux

operating system. The implementations of OPASM,

EDM, and PRE are available at a website (http:

//www.exelixis-lab.org/solon) under the terms of

the GNU General Public License.

IV. CONCLUSION

In this report, we presented a new cost-

optimal parallel system based on MPP paradigm

for efficient parallelisation of approximate string-

matching algorithms. From a practical point of

view, our experimental results show that the pro-

posed system reduces the time for point-to-point

communication up to five times compared to the

one introduced in [6], and that it can match, and

also outperform, the classic parallel system intro-

duced by Edmiston et al. [1]. Finally, we designed

and implemented a performance predictor that

can be used to accurately and efficiently predict

the performance of these systems given a spe-

cific input dataset. We also tested other dynamic-

programming kernels with the presented parallel

systems obtaining similar results. Our immediate

goal is to design, implement, and test a new hybrid

system, between the one proposed here and the

one proposed by Edmiston et al., that will make

use of the proposed system only for the load

imbalanced parallel steps of the system proposed

by Edmiston et al.

REFERENCES

[1] E. Edmiston, N. Core, J. Saltz, and R. Smith.
Parallel processing of biological sequence compar-
ison algorithms. International Journal of Parallel
Programming, 17:259–275, 1988.

[2] GenBank. http://www.ncbi.nlm.nih.gov/genbank/,
June 2012.

[3] P. Heckel. A technique for isolating differences
between files. Communications of the ACM,
21(4):264–268, 1978.

[4] X. Huang. A space-efficient parallel sequence
comparison algorithm for a message-passing mul-
tiprocessor. International Journal of Parallel Pro-
gramming, 18(3):223–239, 1990.

[5] C. Iliopoulos, L. Mouchard, and Y. Pinzon.
The Max-Shift algorithm for approximate string
matching. In G. Brodal, D. Frigioni, and
A. Marchetti-Spaccamela, editors, Proceedings of
the fifth International Workshop on Algorithm En-
gineering (WAE 2001), volume 2141 of Lecture
Notes in Computer Science, pages 13–25, Den-
mark, 2001. Springer.

[6] C. S. Iliopoulos, L. Mouchard, and S. P. Pis-
sis. A parallel algorithm for the fixed-length
approximate string matching problem for high
throughput sequencing technologies. In B. Chap-
man, F. Desprez, G. R. Joubert, A. Lichnewsky,
F. Peters, and T. Priol, editors, Proceedings of the
International Conference on Parallel Computing
(PARCO 2009), volume 19 of Advances in Parallel
Computing, pages 150–157, France, 2010. IOS
Press.

[7] G. M. Landau and U. Vishkin. Fast parallel and
serial approximate string matching. Journal of
Algorithms, 10(2):157–169, 1989.

[8] V. I. Levenshtein. Binary codes capable of correct-
ing deletions, insertions, and reversals. Technical
Report 8, Soviet Physics Doklady, 1966.

[9] J. L. Peterson. Computer programs for detecting
and correcting spelling errors. Communications of
the ACM, 23(12):676–687, 1980.

[10] S. Rajko and S. Aluru. Space and time optimal
parallel sequence alignments. IEEE Transactions
on Parallel and Distributed Systems, 15:1070–
1081, 2004.

[11] P. H. Sellers. On the theory and computation of
evolutionary distances. SIAM Journal on Applied
Mathematics, 26(4):787–793, 1974.

[12] R. A. Wagner and M. J. Fischer. The string-to-
string correction problem. Journal of the ACM,
21(1):168–173, 1974.

[13] M. S. Waterman and T. F. Smith. Identification
of common molecular subsequences. Journal of
Molecular Biology, 147(1):195–197, 1981.

